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BACKGROUND

The Covid-19 pandemic has forced many countries to 
use lockdowns as a public health measure to prevent 
further spread of the disease, often at the expense of 
slowed economic activities. The lockdown-induced 
trade-off between economic and health outcomes has 
underscored the importance to evaluate the 
effectiveness of lockdowns. 

We focus on the US economy given its leading world 
count in Covid-19 cases and its economy’s influence 
on the global economy. In addition, US states have 
experienced varying levels of lockdown success, 
allowing for further investigation. We evaluated the 
health and economic outcomes of different US state 
lockdown policies that vary in duration and 
stringency, adjusted based on the states’ 
characteristics, to determine the optimal lockdown 
policies that would maximize both health and 
economic outcomes.

METHODOLOGY

To understand the effects of lockdown, we first created 
created an index that tracks multiple health and 
economic indicators for each of the 50 states when the 
lockdown policies were imposed. This was done by 
first standardizing these metrics and feeding them 
through a Principal Component Analysis (PCA). 

Then we selected control variables (Population 
Density, Population Size, Political Leaning, and Share 
of Population above 65 years old) that might also play 
a part on lockdown outcomes independent of 
government intervention. Finally, lever variables 
(Duration and Stringency of lockdown) were selected 
for their direct relationship to the characteristic of the 
lockdown. 

We further analyzed the relative variable importance 
between the nuisance and lever variables, generated 
Partial Dependence Plots to understand each lever’s 
marginal effects, and conducted a case study  to 
understand the synergies between potential government 
interventions. 

KEY OBSERVATIONS

1. Lockdown length is more important than 
lockdown stringency to contain the virus. 
Our analysis shows that the longer the length of 
the lockdown, the more effective the lockdown 
is. Stringency on the other hand, has an inverse 
effect on the health index. This means that states 
with more stringent lockdowns actually promotes 
more rebellious behavior which causes more 
deaths, hospitalizations and spikes in cases. 

2. Lockdown length and stringency are both not 
strongly correlated with decline in GDP and 
increase in unemployment. 
While it is common to assume that the longer the 
lockdown, the worse the length of the state of the 
economy, our analysis shows that that is not the 
case. Given alternative consumption methods 
(online shopping) and alternative working 
options (work from home), consumption and 
productivity can still be sustained. This is aligned 
with results globally: the actual or expected drop 
in GDP, across OECD countries is not as 
strongly correlated with lockdown lengths or 
stringency. (McKinsey Analytics)

3. The most effective lockdown duration is 
between 55 and 60 days. 
We found that there is a golden period where 
lockdowns are the most effective. When the 
lockdown is below 55 days, it’s insufficient to 
cause a decline in cases. When the lockdown is 
above 60 days, there is essentially no effect for 
both health index and economic index. 

NEXT STEPS

First, we hope to incorporate more granular county 
level data, so we can add in more control variables 
and obtain results that are of higher statistical 
significance. Second, we hope to extend these 
results globally to check if our observations apply to 
global situations. 
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Introduction
Covid-19 lockdowns have been implemented around the 
world for public health reasons. While lockdowns are 
undoubtedly an effective public health measure, they 
also limit economic activities and negatively affect 
economic growth. For example, the US, leading the 
world charts with over 7 million Covid-19 cases, had a 
GDP fall of 32.9% (annualized rate) in Q2 2020, the 
lowest since 1947.

Policymakers are faced with the challenge of balancing 
the health and economic trade-off. If a lockdown is 
lifted too quickly, it could cause a re-surge in cases, 
resulting in more lockdowns. Alternatively, a lockdown 
that is too long could cause detriments to the economy 
that will take years to recover. Our knowledge of the 
lockdown’s effectiveness is limited and there are few 
historical data references. With over six months of 
current data and different states employing different 
policies, it is possible to empirically assess the 
outcomes from these lockdowns to derive additional 
understandings of the optimal trade-off. 

We aim to create a model that stimulates real-world 
reactions at the state-level towards different lockdown 
policies. The model will allow policymakers to forecast 
lockdown effectiveness and economic impacts. Our 
model can also be used as an evidence-based 
argument to improve policy adherence.

Analytical Approach
While Covid-19 lockdowns have garnered much interest 
from health and economic experts, there still remain 
many gaps in the literature of assessing the effect of 
lockdown measure that we aim to investigate. 

Index Construction
First, we needed a metric that will allow us to measure 
the health and economic outcomes of lockdowns. 
Since outcomes can be measured using many indicators, 
we created two indices that combined relevant 
variables to track the health and economic outcomes of 
a state’s lockdown policy. 

These indicators were created through factor analysis 
where we utilized the top Principal Component across 
individual indicators. This served 2 main purposes; first, 
we want to be able to isolate the underlying latent 
state of either health or economics that causes the 
observables as opposed to relying on the observed 
metrics themselves. This is because metrics observed 
(death, cases in the health cases, or GDP and 
unemployment in the econ cases) are subjected to some 
degree of randomness and may therefore individually 
exhibit variation that would add noise to our data. 
Secondly, the creation of indexes lessens additional 
model we need to run in order to incorporate various 
health outcomes, drastically simplifying the process. 
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Health Index
The Health Index is created to access the coronavirus 
cases in states during the lockdown. The higher the 
absolute number of the health index, the worse the 
performance of the lockdown. Given that this measure 
is a gradient, we opted to focus on the percentage 
decline of 3 key health attributes: daily number of 
deaths, number of hospitalized, and number of cases. 

We obtained the decline rate of each of these 3 health 
attributes during the lockdown using the following 
method. First, we obtained the highest number for 
each of these 3 metrics during the lockdown. Next, we 
extracted these 3 metrics on the last day of the 
lockdown. Lastly, we divided the final day metric by the 
maximum metric to get the gradient change during the 
period. 

 

In simple terms, the higher the gradient change ratio, 
the less effective the lockdown is, because the 
lockdown did not improve the health metric as 
expected. If the ratio is low, it indicates that the 
lockdown is effective in lowering the cases from the 
peak.

As indicated earlier, we wanted to combine these 3 high 
level metrics into one overall indicator. This was done 
by first standardizing these metrics and feeding 
them through a Principal Component Analysis 
(PCA). As expected, the leading principal component 
was able to explain 52% of the variation in these 
metrics, making it a fair representation of the underlying 
health traits. The loading score of the aforementioned 
indicator are all around 0.5, indicating that a one unit 
increase in health index correspond to half a standard 
deviation increase gradient change, pointing to a less 
effective lockdown.   

Economic Index
Similar to the health index, the economic index is 
created to gauge the overall decline in state economic 
condition. 

MODELING 

This measure was done with the use of gradient change 
for 2 metrics: GDP decline from 2019 Q4 to 2020 Q1, 
and unemployment rate increase from February 2020 to 
April 2020.

Since both metrics were already in their natural 
percentage format, rescaling is no longer necessary. We 
simply performed our factor analysis using PCA on 
both these gradients. 

The leading component using the PCA was able to 
explain 71% of the total variation in the gradient 
once again, making a viable candidate to represent the 
underlying economic drivers. The loading vectors for 
GDP change is -0.7 and 0.7 for unemployment change. 
This means as one unit of economic index increases, we 
would expect the GDP to decrease by 0.7% while 
unemployment rate to increase by 0.7%.

Control Variables and Lever Variables
After constructing the indexes needed for our target 
variable, we now move on to create the left hand side of 
our equation, or the x-variables. 

When considering our x-variables, we looked at 
variables that may affect our aforementioned 
indexes independent of any kind of intervention that 
the government attempts. We refer to these variables 
as our control variables. While it may be ideal to 
include as many control variables as possible to create 
impartial results, since we are using state level dataset 
with limited amount of observations (50 states at most), 
to avoid the curse of dimensionality problem, we opted 
to only include 4 main control variables: Population 
Density, Population, Political Leaning and Share of 
Population above 65 years old. These variables are 
selected due to how they may directly affect the indexes 
at hand without the Gov’t intervention.

For our lever variables, we selected two main 
characteristic related lockdown: the length of the 
lockdown and the relative stringency of lockdown 
which is anchored on two characteristics: 1) Whether 
the state required masks and 2) whether the state 
implemented a penalty for violating the rules
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Initial Model Performance
We performed an initial linear regression model to 
assess the relationship between lockdown length and the 
health index. We found that the linear regression model 
gave us an r-squared of 0.279 and we also found the 
lockdown length variable to be statistically 
significant with a p-value of 0.035. Similarly, we fitted 
a second linear regression model to evaluate the 
relationship between lockdown length and the 
economic index. We found that this linear regression 
model had an r-squared of 0.262. In this model, we 
found that the republican feature is statistically 
significant with a p-value of 0.020. 

Improved Model Performance
We then performed a random forest model to account 
for potentially non-linear relationships between the 
variables and the indices as well as increase predictive 
power of our modeling. Moreover, through partial 
dependence plots we can better understand  the 
marginal effect of the length and stringency of 
lockdown on economic and health outcomes. We first 
performed a 20% split on the data set, with 80% of the 
data in the training set and 20% of the data in the test 
set. 

This model gave us a better predictive ability overall 
for our dataset. This includes a 0.9 r-squared for our 
training dataset and a 0.4 r-squared for our test dataset 
when predicting the health indexes and 0.75 r-squared 
for our training dataset and a 033 r-squared for our test 
dataset when predicting the econ indexes. We then set 
out to draw additional inference from the model.

Variable Relative Importance
First we aim to analyze the variable importance 
information within our two models. Starting off with the 
health index model. 

It is apparent from the variable importance plot that the 
lockdown length is by far the most important 
variable in our dataset superseding even the control 
variables that we have included. This generally is in 
line with our hypothesis that the length of lockdown 
will very likely benefit the states in terms of 
containing the spread of the virus. 

Stringency of lockdowns, on the other hand, 
represented by the added levels variable, ranks third in 
importance, indicating that it does somewhat still have 
an effect on the indexes but just not as apparent as the 
length itself.  This can be an artifact of the majority 
perception of lockdown such that most individuals are 
likely to abide by the rules regardless of stringency

For the econ model on the other hand,

the variable importance is rather interesting. No 
individual variable stood out too strongly in terms of 
how irreplaceable it is in our model. It is especially 
quite interesting to see that the Lockdown Length 
actually did not seem to impact the econ index at all 
from a variable importance point of view. These results 
regardless should be taken with a grain of salt given the 
huge variation around the weight of these variables. 
Nonetheless, an insight from this point of view is that 
the economic downfall during COVID may not 
necessarily be as related to the lockdown given the rise 
of alternative consumption methods and alternative 
work opportunities.

Partial Dependence Plots
We now want to take a deep-dive into the health index 
model and examine the two lever variables of interest 
that we have identified: Lockdown length and 
stringency. This is specifically done for the health index 
case as it is in there that both lockdown length and 
added levels were most significant

Optimal Tradeoffs
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Weight Feature
 0.5357 ± 0.4113 Lockdown Length
 0.0115 ± 0.2518 Population 2019
 0.0106 ± 0.0108 Added Levels
 0.0096 ± 0.0161 Republican
-0.0015 ± 0.0055 Democrat
-0.0565 ± 0.1245 Density
-0.1444 ± 0.1540 Share_65 

Table 1: Feature Importance of Health Index

Weight Feature
-0.0026 ± 0.0118 Added Levels
-0.0053 ± 0.0516 Republican
-0.0567 ± 0.1146 Population 2019
-0.0960 ± 0.5125 Density
-0.1043 ± 0.0286 Democrat
-0.2388 ± 0.3275 Share_65
-0.4528 ± 1.1405 Lockdown Length 
Table 2: Feature Importance for Economic Index

Model Performance
Feature Interpretations
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The deep dive into the partial dependence plots shed 
light on something extremely interesting. As expected, 
the partial dependence plots for the lockdown 
periods follows a negative relationship with the 
health index (i.e., as lockdown length increases, we see 
a greater reduction in cases from the peak). The effect is 
actually not fully continuous but there is a sharp 
increase in effectiveness of lockdown at around 55-60 
days and later remains flat. While not conclusive, this 
gives us an idea to the ideal lockdown period. 

Another interesting insight that emerged is that 
lockdown stringency actually may trigger an inverse 
reaction that governments do not expect. Specifically,  
we saw that as stringency increases, the health index 
actually rose gradually, indicating a less effective 
lockdown. This is likely due to individuals feeling too 
suppressed and constrained by the lockdown and end up 
not abiding by the lockdown rules altogether.

Case Studies
In order to better understand the effect of lockdown 
length on the health and economic outcomes, we 
decided to look more closely at how states health and 
economic indices change when lockdown lengths are 
altered. For Texas, with an original 30-day lockdown, 
we predicted the health index to be 0.82. However, 
when we extend this lockdown period to 60 days, the 
health index decreases to -0.61 and when we further 
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Discussion & Conclusion
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extend this lockdown period to 90 days, the health index 
decreases to -0.84. This result is consistent with our 
finding that longer lockdowns lead to better 
containment of the disease and better health 
outcomes. We also took a look at the economic index 
and found that adjusting the lockdown period does not 
drastically affect the economic index. For the state of 
Alabama, we notice that the economic index with the 
original 26-day lockdown is predicted to be -1.43 while 
an extension of the lockdown to 40 days gives us an 
economic index of -0.21 and an extension to 60 days 
gives us a new prediction of  -0.05. 

Conclusion & Next Steps
This study from a theoretical level showed that 
lockdown length, stringency and efficiency is not a 
purely additive function. Lockdown length and 
stringency does not have a positive linear function with 
improved health outcomes. Instead, the the best 
approach to achieve an efficient lockdown is often a 
combination the right length with a lesser emphasis 
on stringency. Furthermore we also explored and 
realized that the lockdown length and stringency does 
not drastically affect the economic status of states due to 
the rise of other opportunities.

In the future, we wish to extend this study to a county 
but also a global level in order to incorporate more 
control variables but also allow us to create statistical 
models with more confidence from more observations. 

Figure 2: Partial dependence (lockdown length) Figure 3: Partial dependence (lockdown stringency)



SOURCES

Data Sets:
1. Population.csv: Population of each state 

(https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html) 
2. Area.csv: Area of each state (https://www.kaggle.com/giodev11/usstates-dataset?select=state-areas.csv) 
3. Deaths.csv: Number of deaths during the lockdown (https://covidtracking.com/data) 
4. Hospitalized.csv: Number of hospitalizations during the lockdown (https://covidtracking.com/data) 
5. Cases.csv: Total number of cases during the lockdown  (https://covidtracking.com/data)  
6. Unemployment.csv: Unemployment rate of each state from March 2020 - July 2020 

(https://carsey.unh.edu/COVID-19-Economic-Impact-By-State) 
7. GDP.csv: GDP change from each state from Q4 2019 to Q1 2020 (https://www.bea.gov/data/gdp/gdp-state) 

References: 
McKinsey & Company (2020), More stringent lockdowns aren’t necessarily worse for GDP 
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/covid-19-saving-thousands-of-l
ives-and-trillions-in-livelihoods 

Code: 
1. Python and Jupyter Notebook were primarily used for data wrangling, EDA, and preliminary 

visualization. We used standard libraries such as pandas, numpy, matplotlib, seaborn, scipy, etc.
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Figure 4: Linear Regression Health Index Figure 5: Linear Regression Econ Index
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In [1]:
import pandas as pd 
from matplotlib import pyplot as plt 
import numpy as np 
 from bs4 import BeautifulSoup 
import requests 
from selenium.webdriver import Chrome 
from selenium.webdriver.support.select import Select 
from selenium.webdriver.common.action_chains import ActionChains 
from selenium.webdriver.common.keys import Keys 
from selenium.webdriver.common.by import By 
from selenium.webdriver.support.ui import WebDriverWait 
from selenium.webdriver.support.expected_conditions import visibility_o
f_element_located, element_to_be_clickable 
import os 
 #Insert chrome driver directory here 
from selenium import webdriver 
from webdriver_manager.chrome import ChromeDriverManager 
 driver = webdriver.Chrome(ChromeDriverManager().install()) 

In [6]:
driver.get('https://infogram.com/reopening-chart-1h7j4dmw0wqx4nr') 

In [23]:
ds = pd.DataFrame(np.reshape([i.text for i in driver.find_elements_by_t
ag_name('td')],(51,5)).tolist()) 

In [25]:
ds 

Out[25]:
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than 100...

Travelers from
 all

states outside of
N

ew
 Engla...

30
N

ew
 Jersey

M
arch 21 - June 9:;

Penalties for
violations o...

N
ew

 Jersey has
reopened retail

stores, outdoor...

Yes – required for
anyone over age 2

in indoor...

Travelers from
 a

state w
ith either

m
ore than 1...

31
N

ew
 M

exico
M

arch 24 - M
ay 31;

Penalties not
m

entioned.

N
ew

 M
exico has

reopened retail
stores, m

alls, ...

Yes – required in
public spaces.

All travelers m
ust

self-quarantine for
14 days...

32
N

ew
 York

M
arch 22 - M

ay 28:
Penalties not

m
entioned.

N
ew

 York has
reopened retail

stores, outdoor d...

Yes – required for
anyone over age 2

in public...

Travelers from
 a

state w
ith either

m
ore than 1...

33
N

orth C
arolina

M
arch 30 - M

ay 22:
Violation is

punishable as ...

N
orth C

arolina has
reopened retail

stores, res...

Yes – required for
people over age 2

in public...

There are no
statew

ide
restrictions.

34
N

orth D
akota

N
o stay at hom

e
order.

N
orth D

akota never
issued a stay-at-

hom
e order...

N
o

There are no
statew

ide
restrictions.
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0
1

2
3

4

35
O

hio
M

arch 23 - M
ay 29:

Enforced by state
and local...

O
hio has reopened

retail stores,
restaurant di...

Yes – required for
people age 10 and

older w
he...

The state
encourages

travelers from
states rep...

36
O

klahom
a

M
arch 24 - M

ay 6:
Penalties not

m
entioned.

O
klahom

a reopened
retail stores,

restaurant di...
N

o
There are no

statew
ide

restrictions.

37
O

regon
M

arch 23 until
further notice: Any

person foun...

O
regon has

reopened retail
stores, restaurant ...

Yes – required in
public spaces for

people age...

There are no
statew

ide
restrictions.

38
Pennsylvania

M
arch 23 - June 4:

Penalties not
m

entioned.

Pennsylvania has
reopened retail
stores, house...

Yes – required for
anyone age 2 or

older in pu...

Travelers from
 a

state deem
ed at

risk are reco...

39
R

hode Island
M

arch 28 - M
ay 8:

Penalties not
m

entioned.

R
hode Island has
reopened retail
stores, resta...

Yes – required in all
public spaces.

Travelers from
states w

ith a
positivity rate o...

40
South C

arolina
April 6 - M

ay 4: All
law

 enforcem
ent

officers ...

South C
arolina has

reopened retail
stores, res...

N
o

The state is
encouraging out-of-

state traveler...

41
South D

akota
N

o stay at hom
e

order.

The governor never
issued a stay-at-

hom
e order...

N
o

There are no
statew

ide
restrictions.

42
Tennessee

M
arch 31 - April 30:

Penalties not
m

entioned.

Tennessee has
reopened

restaurants and
retail ...

N
o

There are no
statew

ide
restrictions.

43
Texas

M
arch 31 - April 30:
Failure to com

ply
w

ith an...

Texas has reopened
retail stores,

restaurants,...

Yes – required in all
counties w

ith m
ore

than ...

There are no
statew

ide
restrictions.

44
U

tah
M

arch 27 - M
ay 1:

Penalties not
m

entioned.

U
tah has reopened

restaurants,
personal servic...

N
o

There are no
statew

ide
restrictions.

45
Verm

ont
M

arch 24 - M
ay 15:

Penalties not
m

entioned.

Verm
ont has

reopened retail
stores, restaurant...

Yes – required for
anyone age 2 or

older w
hen ...

Travelers driving
m

ust either
quarantine for 1...
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In [29]:
ds.columns = ['state','time','reopen','requirement','add.restrictions'] 

In [44]:
def clean_func(x): 
    if "-" in x: 
        return(x.split(';')[0].split(':')[0].split('.')[0].split('(')[0
]) 
 ds['time_range'] = ds.time.apply(clean_func) 

In [46]:
ds.to_csv('ds.csv') 

Part 2
In [42]:

lever_variables = pd.read_csv('https://docs.google.com/spreadsheets/u/
1/d/1rHxjvo7rZHRoO8x3RUTl4g8eSfOyumngTUIIsyhHUqw/export?format=csv&id=1
rHxjvo7rZHRoO8x3RUTl4g8eSfOyumngTUIIsyhHUqw&gid=98237079') 

0
1

2
3

4

46
Virginia

M
arch 24 - June 10:

C
lass 1

m
isdem

eanor: jail ...

Virginia has
reopened retail

stores, restauran...

Yes – required in
public places for

anyone ove...

There are no
statew

ide
restrictions.

47
W

ashington
M

arch 25 - M
ay 31:

C
rim

inal penalties
pursuant...

W
ashington has

reopened retail
stores, restaur...

Yes – required for
anyone age 5 or

older in an...

There are no
statew

ide
restrictions.

48
W

est Virginia
M

arch 24 - M
ay 4:

The order m
ay be

enforced by...

W
est Virginia has
reopened retail

stores, m
all...

Yes – required for
anyone age 9 or

older in al...

There are no
statew

ide
restrictions.

49
W

isconsin
M

arch 25 – M
ay 13:

O
rder m

ay be
enforced by an...

The governor's stay-
at-hom

e order w
as

to be in...

Yes – required for
anyone age 5 or

older in pu...

The state
encourages

travelers to check
them

se...

50
W

yom
ing

N
o stay at hom

e
order.

W
yom

ing never
issued a stay-at-

hom
e order and ...

N
o

There are no
statew

ide
restrictions.
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lever_variables['lockdown_len'] = lever_variables['lockdown_len'].apply
(lambda x: str(x).split(" ")[0]) 
lever_variables['added_levels'] = lever_variables.penalties + lever_var
iables.masks_required 
states = lever_variables.copy() 

In [141]:
states['share_65'] = states['Total number, adults age 65 and older']/st
ates['Population 2019'] 
density = (states.iloc[:,10].astype(float)/states.iloc[:,9].astype(floa
t)).reset_index()[[0]] 
density.columns = ['density'] 
 states = pd.concat([states,pd.get_dummies(states.iloc[:,13]), density],
axis = 1) 

In [143]:
pruned_states = states[['State','Abbreviation','Population 2019','lockd
own_len','density','Democrat','Republican','added_levels', 'share_65']] 

In [144]:
pruned_states 

Out[144]:
State

A
bbreviation

Population
2019

lockdow
n_len

density
density

D
em

ocrat

0
Alabam

a
AL

4903185
26

93.531179
93.531179

0

1
Alaska

AK
731545

27
1.114438

1.114438
0

2
Arizona

AZ
7278717

45
63.845034

63.845034
0

3
Arkansas

AR
3017804

nan
56.744838

56.744838
0

4
C

alifornia
C

A
39512223

nan
241.359398

241.359398
1

5
C

olorado
C

O
5758736

31
55.319270

55.319270
1

6
C

onnecticut
C

T
3565287

58
643.089286

643.089286
1

7
D

elaw
are

D
E

973764
68

498.343910
498.343910

1

8
D

istrict of
C

olum
bia

D
C

705749
44

10.732519
10.732519

1
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State
A

bbreviation
Population

2019
lockdow

n_len
density

density
D

em
ocrat

9
Florida

FL
21477737

27
361.328662

361.328662
0

10
G

eorgia
G

A
10617423

27
971.224204

971.224204
0

11
H

aw
aii

H
I

1415872
67

16.941537
16.941537

1

12
Idaho

ID
1787065

36
30.855088

30.855088
0

13
Illinois

IL
12671821

67
347.935777

347.935777
1

14
Indiana

IN
6732219

38
119.628598

119.628598
0

15
Iow

a
IA

3155070
nan

38.344595
38.344595

0

16
Kansas

KS
2913314

34
72.092104

72.092104
0

17
Kentucky

KY
4467673

nan
86.176977

86.176977
0

18
Louisiana

LA
4648794

54
131.370108

131.370108
0

19
M

aine
M

E
1344212

59
108.343032

108.343032
1

20
M

aryland
M

D
6045680

nan
572.778778

572.778778
1

21
M

assachusetts
M

A
6892503

55
71.196188

71.196188
1

22
M

ichigan
M

I
9986857

65
114.866717

114.866717
0

23
M

innesota
M

N
5639632

51
116.439526

116.439526
1

24
M

ississippi
M

S
2976149

41
42.693899

42.693899
0

25
M

issouri
M

O
6137428

27
41.738150

41.738150
0

26
M

ontana
M

T
1068778

28
13.815998

13.815998
0

27
N

ebraska
N

E
1934408

nan
17.495347

17.495347
0

28
N

evada
N

V
3080156

37
329.393220

329.393220
1

29
N

ew
H

am
pshire

N
H

1359711
80

155.894405
155.894405

1

30
N

ew
 Jersey

N
J

8882190
80

73.048531
73.048531

1

31
N

ew
 M

exico
N

M
2096829

68
38.491583

38.491583
1

32
N

ew
 York

N
Y

19453561
67

361.449267
361.449267

1
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In [145]:
import datetime 

In [154]:
bounds = lever_variables[['State','Abbreviation','lockdown_start','lock
down_end']] 
def convert(x): 

State
A

bbreviation
Population

2019
lockdow

n_len
density

density
D

em
ocrat

33
N

orth C
arolina

N
C

10488084
53

148.337916
148.337916

0

34
N

orth D
akota

N
D

762062
nan

16.999688
16.999688

0

35
O

hio
O

H
11689100

67
167.218860

167.218860
0

36
O

klahom
a

O
K

3956971
43

40.218842
40.218842

0

37
O

regon
O

R
4217737

nan
91.574471

91.574471
1

38
Pennsylvania

PA
12801989

73
8286.077023

8286.077023
0

39
R

hode Island
R

I
1059361

41
33.097791

33.097791
1

40
South C

arolina
SC

5148714
28

66.761505
66.761505

0

41
South D

akota
SD

884659
nan

20.990343
20.990343

0

42
Tennessee

TN
6829174

30
25.424976

25.424976
0

43
Texas

TX
28995881

30
341.513721

341.513721
0

44
U

tah
U

T
3205958

35
333.432969

333.432969
0

45
Verm

ont
VT

623989
52

14.589750
14.589750

1

46
Virginia

VA
8535519

78
119.707712

119.707712
1

47
W

ashington
W

A
7614893

67
314.262432

314.262432
1

48
W

est Virginia
W

V
1792147

41
27.359770

27.359770
0

49
W

isconsin
W

I
5822434

nan
59.523135

59.523135
0

50
W

yom
ing

W
Y

578759
nan

8511.161765
8511.161765

0

51
Puerto R

ico
N

aN
3193694

nan
908.590043

908.590043
0
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    try: 
        return(datetime.datetime.strptime(str(x),'%Y-%m-%d')) 
    except: 
        return(datetime.datetime.strptime('1899-01-01','%Y-%m-%d')) 
 years_added = datetime.timedelta(days = 365 * 120) 
bounds.lockdown_end = bounds.lockdown_end.apply(lambda x: convert(x) + 
years_added) 
bounds.lockdown_start = bounds.lockdown_start.apply(lambda x: convert(x
) + years_added) 
bounds = bounds.dropna(axis = 0) 

In [233]:
covid = pd.read_csv('https://covidtracking.com/data/download/all-states
-history.csv') 

In [234]:
covid.dropna(subset = ['state']).columns 

Out[234]:
Index(['date', 'state', 'dataQualityGrade', 'death', 'deathConfirmed', 
       'deathIncrease', 'deathProbable', 'hospitalized', 
       'hospitalizedCumulative', 'hospitalizedCurrently', 
       'hospitalizedIncrease', 'inIcuCumulative', 'inIcuCurrently', 'ne
gative', 
       'negativeIncrease', 'negativeTestsAntibody', 
       'negativeTestsPeopleAntibody', 'negativeTestsViral', 
       'onVentilatorCumulative', 'onVentilatorCurrently', 'pending', 
       'positive', 'positiveCasesViral', 'positiveIncrease', 'positiveS
core', 
       'positiveTestsAntibody', 'positiveTestsAntigen', 
       'positiveTestsPeopleAntibody', 'positiveTestsPeopleAntigen', 
       'positiveTestsViral', 'recovered', 'totalTestEncountersViral', 
       'totalTestEncountersViralIncrease', 'totalTestResults', 
       'totalTestResultsIncrease', 'totalTestsAntibody', 'totalTestsAnt
igen', 
       'totalTestsPeopleAntibody', 'totalTestsPeopleAntigen', 
       'totalTestsPeopleViral', 'totalTestsPeopleViralIncrease', 
       'totalTestsViral', 'totalTestsViralIncrease'], 
      dtype='object')
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In [235]:
covid.date = covid.date.apply(lambda x: convert(x)) 
filtered_covid = pd.merge(covid,bounds[['Abbreviation','lockdown_start'
,'lockdown_end']], left_on='state', right_on = 'Abbreviation') 
weeks2_added = datetime.timedelta(days = 14) 
filtered_covid['lockdown_end_delayed'] = filtered_covid['lockdown_end']
 + weeks2_added 
filtered_covid['lockdown_start_delayed'] = filtered_covid['lockdown_sta
rt'] + weeks2_added 
filtered_covid = filtered_covid.query('(date<=lockdown_end_delayed) &
 (date>=lockdown_start_delayed)') 

In [242]:
filtered_covid_peak = filtered_covid.groupby('state').agg({'deathIncrea
se':'max', 
                                     'hospitalizedIncrease':'max', 
                                     'positiveIncrease':'max'}).reset_i
ndex() 

In [243]:
filtered_covid_end = filtered_covid.sort_values('date').reset_index().g
roupby('state').agg({'deathIncrease':'last', 
                                     'hospitalizedIncrease':'last', 
                                     'positiveIncrease':'last'}).reset_
index() 

In [251]:
fil_cov = pd.merge(filtered_covid_peak,filtered_covid_end, on = 'state'
) fil_cov['death_diminishing_rate'] = fil_cov['deathIncrease_y']/fil_cov[
'deathIncrease_x'] 
fil_cov['hospitalized_diminishing_rate'] = fil_cov['hospitalizedIncreas
e_y']/fil_cov['hospitalizedIncrease_x'] 
fil_cov['positive_diminishing_rate'] = fil_cov['positiveIncrease_y']/fi
l_cov['positiveIncrease_x'] 

In [255]:
fil_cov = fil_cov[['state','death_diminishing_rate', 
         'hospitalized_diminishing_rate', 
         'positive_diminishing_rate']].fillna(fil_cov.hospitalized_dimi
nishing_rate.mean(skipna = True)) 
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In [256]:
filtered_covid_agg = fil_cov 

In [266]:
from sklearn.preprocessing import StandardScaler 
filtered_covid_agg_data = StandardScaler().fit_transform(filtered_covid
_agg[['death_diminishing_rate', 
                                                                       
      'hospitalized_diminishing_rate', 
                                                                       
      'positive_diminishing_rate']]) 

In [267]:
from sklearn.decomposition import PCA 
pca = PCA(n_components=3) 
principalComponents = pca.fit(filtered_covid_agg_data) 

In [268]:
principalComponents.explained_variance_ratio_ 

In [269]:
principalComponents.components_ 

In [296]:
filtered_covid_agg_data 

Out[268]:
array([0.52673492, 0.27307939, 0.20018569])

Out[269]:
array([[ 0.59069292,  0.5009272 ,  0.63257713], 
       [-0.51333867,  0.83814829, -0.18436607], 
       [ 0.62254742,  0.21582257, -0.75223356]])

Out[296]:
array([[-0.08679487,  1.3729835 ,  0.19620723], 
       [ 0.96462078, -0.4564843 , -0.6299453 ], 
       [-0.01447528,  2.21565164,  0.99622318], 
       [ 1.43191663,  2.60034796,  1.62884168], 
       [-0.87404533, -1.08174544, -1.87315364], 
       [ 1.43191663,  0.        , -0.16038737], 
       [ 0.35988498,  0.        , -0.72621194], 
       [ 1.12817433,  1.55495867, -0.16996099], 
       [-0.48165987,  0.41774961,  0.2410829 ], 
       [-1.60550638, -1.08174544, -1.94319354], 
       [ 1.43191663, -0.63989423, -1.44723529], 
       [ 0.4618496 ,  0.        ,  0.24863326], 
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In [270]:
filtered_covid_agg['health_index'] = [i[0] for i in principalComponents
.transform(filtered_covid_agg_data)] 

In [303]:
filtered_covid_agg[['state','health_index']] 

       [ 1.04533552, -1.08174544,  0.78910924], 
       [-0.50098892,  0.39109192,  0.93323987], 
       [-0.56948613,  0.        , -1.39268913], 
       [-0.03858181, -0.28920422,  0.34701358], 
       [-1.60550638, -0.78116639, -0.12215598], 
       [-0.72483344,  0.        ,  1.62884168], 
       [ 1.43191663,  0.95515729,  1.3198421 ], 
       [ 0.47273042,  0.        , -0.17641224], 
       [ 0.99799906, -0.29055182,  1.4420686 ], 
       [-1.60550638,  1.98666573, -0.83201989], 
       [ 0.50381516,  0.        ,  1.12684918], 
       [-0.64632017, -0.79850749,  0.37661305], 
       [-1.26450671,  0.        , -1.01900844], 
       [ 1.17879805, -1.08174544,  0.16357168], 
       [ 0.49732494,  0.        , -0.14930323], 
       [-0.95075168, -0.764509  , -1.44036016], 
       [-0.57102173,  0.89706666, -0.67790741], 
       [-1.03598957, -1.08174544, -0.21431375], 
       [-0.95306353, -1.08174544, -0.79913798], 
       [-0.18171434, -0.60340702,  1.43813897], 
       [ 0.41944229,  0.37665234,  1.12447823], 
       [ 0.56408148,  2.07433462, -0.19314237], 
       [ 1.43191663,  0.        , -0.12823161], 
       [-0.99802178, -0.67822835,  0.62827159], 
       [ 0.40136239, -0.88674361,  1.62884168], 
       [-1.60550638, -1.08174544, -1.67303962], 
       [-1.27263811,  0.        , -0.23723042], 
       [ 1.43191663, -1.08174544, -0.25282744]])

Out[303]:
state

health_index

0
AK

0.760612
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state
health_index

1
AL

-0.057360

2
AZ

1.731518

3
C

O
3.178776

4
C

T
-2.243082

5
D

C
0.744366

6
D

E
-0.246804

7
FL

1.337812

8
G

A
0.077253

9
H

I
-2.719457

10
ID

-0.390205

11
IL

0.430091

12
IN

0.574769

13
KS

0.490324

14
LA

-1.217375

15
M

A
0.051853

16
M

E
-1.416942

17
M

I
0.602214

18
M

N
2.159189

19
M

O
0.167644

20
M

S
1.356185

21
M

T
-0.479503

22
N

C
1.010419

23
N

H
-0.543534

24
N

J
-1.391537

25
N

M
0.257904
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In [271]:
health_i = pd.merge(pruned_states,filtered_covid_agg[['state','health_i
ndex']], left_on = 'Abbreviation', right_on = 'state') 

In [279]:
plt.scatter(health_i.lockdown_len,health_i.health_index) 

state
health_index

26
N

V
0.199321

27
N

Y
-1.855705

28
O

H
-0.316762

29
O

K
-1.289397

30
PA

-1.610360

31
R

I
0.500133

32
SC

1.147756

33
TN

1.250112

34
TX

0.764707

35
U

T
-0.531837

36
VA

0.823256

37
VT

-2.548564

38
W

A
-0.901805

39
W

V
0.144014

Out[279]:
<matplotlib.collections.PathCollection at 0x1312789e8>
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In [273]:
health_i.to_csv('health_index.csv') 

In [274]:
econ = pd.read_csv('Downloads/gdp1.csv').iloc[:,1:7].dropna(axis = 0).d
rop(['Unemployment Feb20'], axis = 1) 

In [275]:
econ.iloc[:,2] = econ.iloc[:,2].apply(lambda x: x.replace("%","")).appl
y(float) 
econ.iloc[:,3] = econ.iloc[:,3].apply(lambda x: x.replace("%","")).appl
y(float) 
econ.iloc[:,4] = econ.iloc[:,4].apply(lambda x: x.replace("%","")).appl
y(float) 

In [280]:
econ['Unemployment_Rate'] = econ.iloc[:,4]/econ.iloc[:,2] 

In [289]:
econ = econ.drop(['Unemployment March20','Unemployment April20','Unempl
oyment May20'], axis = 1) 

In [290]:
from sklearn.decomposition import PCA 
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pca = PCA(n_components=2) 
principalComponents2 = pca.fit(econ.iloc[:,1:]) 

In [291]:
principalComponents2.explained_variance_ratio_ 

In [292]:
principalComponents2.components_ 

In [293]:
econ['indexes'] = [i[0] for i in principalComponents2.transform(econ.il
oc[:,1:])] 

In [300]:
econ 

Out[291]:
array([0.71729648, 0.28270352])

Out[292]:
array([[-0.71484831,  0.69927956], 
       [ 0.69927956,  0.71484831]])

Out[300]:
State

G
D

P change 1st quarter
U

nem
ploym

ent_R
ate

indexes

0
Alabam

a
-4.8

3.200000
-0.049782

1
Alaska

-4.0
2.442308

-1.151499

2
Arizona

-3.6
1.475410

-2.113570

3
Arkansas

-5.0
1.920000

-0.801890

4
C

alifornia
-4.7

2.981818
-0.273837

5
C

olorado
-4.1

1.961538
-1.416206

6
C

onnecticut
-4.6

2.823529
-0.456010

7
D

elaw
are

-5.6
3.180000

0.508111

8
D

istrict of C
olum

bia
-4.0

1.466667
-1.833745

9
Florida

-4.9
3.113636

-0.038689

10
G

eorgia
-4.7

2.043478
-0.929999

11
H

aw
aii

-8.1
9.791667

6.918635
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State
G

D
P change 1st quarter

U
nem

ploym
ent_R

ate
indexes

12
Idaho

-4.1
3.600000

-0.270464

13
Illinois

-5.4
3.642857

0.688808

14
Indiana

-5.6
4.100000

1.151449

15
Iow

a
-3.5

3.090909
-1.055370

16
Kansas

-3.1
3.571429

-1.005291

17
Kentucky

-5.8
2.096154

-0.106830

18
Louisiana

-6.6
2.119403

0.481306

19
M

aine
-6.3

3.133333
0.975872

20
M

aryland
-5.0

3.030303
-0.025478

21
M

assachusetts
-5.1

5.928571
2.072707

22
M

ichigan
-6.8

4.953488
2.606093

23
M

innesota
-4.0

3.413793
-0.472159

24
M

ississippi
-5.2

2.058824
-0.561844

25
M

issouri
-4.7

2.589744
-0.548006

26
M

ontana
-5.4

2.500000
-0.110368

27
N

ebraska
-1.3

1.325000
-3.862900

28
N

evada
-8.2

3.666667
2.707033

29
N

ew
 H

am
pshire

-5.7
6.416667

2.842931

30
N

ew
 Jersey

-5.5
4.162162

1.123432

31
N

ew
 M

exico
-3.1

1.444444
-2.492648

32
N

ew
 York

-8.2
3.536585

2.616070

33
N

orth C
arolina

-5.1
2.976744

0.008555

34
N

orth D
akota

-2.6
4.550000

-0.678421

35
O

hio
-5.5

2.396552
-0.111223

36
O

klahom
a

-4.0
4.344828

0.178894
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In [301]:
econ.iloc[:,[0,3]] 

State
G

D
P change 1st quarter

U
nem

ploym
ent_R

ate
indexes

37
O

regon
-4.4

4.085714
0.283641

38
Pennsylvania

-5.6
2.310345

-0.100021

39
R

hode Island
-6.2

3.489362
1.153351

40
South C

arolina
-4.8

3.875000
0.422232

41
South D

akota
-2.2

3.032258
-2.025686

42
Tennessee

-6.2
3.333333

1.044243

43
Texas

-2.5
2.549020

-2.149150

44
U

tah
-3.1

2.263158
-1.920138

45
Verm

ont
-6.1

4.129032
1.529174

46
Virginia

-3.8
2.727273

-1.095199

47
W

ashington
-5.0

2.960784
-0.074091

48
W

est Virginia
-5.0

2.150000
-0.641056

49
W

isconsin
-5.0

3.903226
0.584939

50
W

yom
ing

-3.6
2.315789

-1.525910

Out[301]:
State

indexes

0
Alabam

a
-0.049782

1
Alaska

-1.151499

2
Arizona

-2.113570

3
Arkansas

-0.801890

4
C

alifornia
-0.273837

5
C

olorado
-1.416206

6
C

onnecticut
-0.456010
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State
indexes

7
D

elaw
are

0.508111

8
D

istrict of C
olum

bia
-1.833745

9
Florida

-0.038689

10
G

eorgia
-0.929999

11
H

aw
aii

6.918635

12
Idaho

-0.270464

13
Illinois

0.688808

14
Indiana

1.151449

15
Iow

a
-1.055370

16
Kansas

-1.005291

17
Kentucky

-0.106830

18
Louisiana

0.481306

19
M

aine
0.975872

20
M

aryland
-0.025478

21
M

assachusetts
2.072707

22
M

ichigan
2.606093

23
M

innesota
-0.472159

24
M

ississippi
-0.561844

25
M

issouri
-0.548006

26
M

ontana
-0.110368

27
N

ebraska
-3.862900

28
N

evada
2.707033

29
N

ew
 H

am
pshire

2.842931

30
N

ew
 Jersey

1.123432

31
N

ew
 M

exico
-2.492648
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In [294]:
econ.to_csv('econ.csv') 

In [ ]:
covid.dropna(subset = ['state'])[] 

In [ ]:
  

State
indexes

32
N

ew
 York

2.616070

33
N

orth C
arolina

0.008555

34
N

orth D
akota

-0.678421

35
O

hio
-0.111223

36
O

klahom
a

0.178894

37
O

regon
0.283641

38
Pennsylvania

-0.100021

39
R

hode Island
1.153351

40
South C

arolina
0.422232

41
South D

akota
-2.025686

42
Tennessee

1.044243

43
Texas

-2.149150

44
U

tah
-1.920138

45
Verm

ont
1.529174

46
Virginia

-1.095199

47
W

ashington
-0.074091

48
W

est Virginia
-0.641056

49
W

isconsin
0.584939

50
W

yom
ing

-1.525910
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In [6]:
import numpy as np 
import pandas as pd 
 from datetime import datetime 
 import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
 import sklearn.model_selection as ms 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.ensemble import GradientBoostingRegressor 
from sklearn.metrics import mean_squared_error 
from sklearn.cluster import KMeans 
from sklearn.manifold import TSNE 
from sklearn.inspection import plot_partial_dependence 

In [7]:
lockdown_data = pd.read_csv("~/Downloads/ds.csv")  

In [8]:
lockdown_data["time_range"] = lockdown_data["time_range"][lockdown_data
['time_range'].notnull()].apply(lambda x: x.split(" - ")) 

In [9]:
lockdown_data["lockdown_start"] = lockdown_data["time_range"][lockdown_
data['time_range'].notnull()].apply(lambda x:x[0]) 
lockdown_data["lockdown_end"] = lockdown_data["time_range"][lockdown_da
ta['time_range'].notnull()].apply(lambda x:x[1]) 

In [10]:
lockdown_data["lockdown_end"][10] = "April 30" 
lockdown_data["lockdown_start"] = lockdown_data["lockdown_start"][lockd
own_data['lockdown_start'].notnull()].apply(lambda x:datetime.strptime(
x, '%B %d')) 
lockdown_data["lockdown_end"] = lockdown_data["lockdown_end"][lockdown_
data['lockdown_end'].notnull()].apply(lambda x:datetime.strptime(x, '%B
 %d')) 

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:1: Setting
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In [11]:
lockdown_data["lockdown_len"] = lockdown_data["lockdown_end"] - lockdow
n_data["lockdown_start"] 

In [12]:
lockdown_data["penalties"] = lockdown_data["time"].apply(lambda x : not
("Penalties not mentioned." in x)) 

In [13]:
lockdown_data["masks_required"] = lockdown_data["requirement"].apply(la
mbda x : "Yes" in x) 

In [14]:
lockdown_data["additional"] = lockdown_data["add.restrictions"].apply(l
ambda x : not("There are no statewide restrictions." in x)) 

In [15]:
state_data = pd.read_csv("~/Desktop/State Data  - Sheet1.csv")  

In [16]:
new_header = state_data.iloc[0]  
state_data = state_data[1:]  
state_data.columns = new_header 

In [17]:
lockdown_data_new = lockdown_data.iloc[:, [1, 7, 8, 9, 10, 11, 12]] 

In [18]:
lockdown_data_new = lockdown_data_new.rename(columns = {"state":"State"
}) 
state_data = state_data.rename(columns = {'State ':"State"}) 

In [19]:
merged_data = pd.merge(lockdown_data_new, state_data, on='State', how=
'outer') 

g
_

g
WithCopyWarning:  

A value is trying to be set on a copy of a slice from a DataFrame 
 See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy 
  """Entry point for launching an IPython kernel. 
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In [20]:
merged_data.to_csv(r'~/Desktop/state_lockdown_data.csv') 

In [ ]:
#skeleton code 
 X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 0) 
rfregressor = RandomForestRegressor(max_depth=100, random_state=0) 
rfregressor.fit(X_train, y_train)  
 #partial dependency 
my_plots = plot_partial_dependence(rfregressor,        
                                   features=[0, 2], # column numbers of
 plots we want to show 
                                   X=X,            # raw predictors dat
a. 
                                   feature_names=['Distance', 'Landsiz
e', 'BuildingArea'], # labels on graphs 
                                   grid_resolution=10) 
 #feature importance 
importances = rfregressor.feature_importances_ 
std = np.std([tree.feature_importances_ for tree in rfregressor.estimat
ors_], 
             axis=0) 
indices = np.argsort(importances)[::-1] 
 # Print the feature ranking 
print("Feature ranking:") 
 for f in range(X.shape[1]): 
    print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indic
es[f]])) 
 # Plot the impurity-based feature importances of the forest 
plt.figure() 
plt.title("Feature importances") 
plt.bar(range(X.shape[1]), importances[indices], 
        color="r", yerr=std[indices], align="center") 
plt.xticks(range(X.shape[1]), indices) 
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plt.xlim([-1, X.shape[1]]) 
plt.show() 
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In [963]:
import numpy as np 
import pandas as pd 
 import statsmodels.api as sm 
 from datetime import datetime 
 import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
 import sklearn.model_selection as ms 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.ensemble import GradientBoostingRegressor 
from sklearn.metrics import mean_squared_error 
from sklearn.cluster import KMeans 
from sklearn.manifold import TSNE 
from sklearn.inspection import plot_partial_dependence 
from sklearn.inspection import permutation_importance 
from sklearn.metrics import r2_score 
from sklearn.inspection import partial_dependence 
  import eli5 
from eli5.sklearn import PermutationImportance 
 import plotly 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import plotly.express as px 
import matplotlib 
%matplotlib inline 

In [964]:
health_index = pd.read_csv("~/Desktop/health_index.csv") 
econ_index = pd.read_csv("~/Desktop/econ.csv")  
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In [965]:
health_index = health_index.rename(columns = {'lockdown_len':"Lockdown
 Length"}) 
health_index = health_index.rename(columns = {'health_index':"Health In
dex"}) 
health_index = health_index.rename(columns = {'added_levels':"Added Lev
els"}) 
health_index = health_index.rename(columns = {'density':"Density"}) 
health_index = health_index.rename(columns = {'share_65':"Share_65"}) 
X = health_index.iloc[:, [3, 4, 5, 7, 9, 11, 12]] 
X = X.drop(X.index[12]) 
y = health_index.iloc[:, [14]] 
y = y.drop(y.index[12]) 
y = y.values.ravel() 

In [966]:
for i in range(len(y)): 
    temp_X = X.drop(X.index[i]) 
    temp_y = y.drop(y.index[i]) 
    temp_y = temp_y.values.ravel() 
    rfregressor = RandomForestRegressor(max_depth=4, random_state=5) 
    rfregressor.fit(temp_X, temp_y)  
    print(i, rfregressor.predict(health_index.iloc[i, [3, 4, 5, 7, 9, 1
1, 12]].values.reshape(1, -1))-health_index.iloc[i, [14]].values) 

In [888]:
LR = sm.OLS(y, X).fit() 

-----------------------------------------------------------------------
---- 
AttributeError                            Traceback (most recent call l
ast) 
<ipython-input-966-4227c171821b> in <module> 
      1 for i in range(len(y)): 
      2     temp_X = X.drop(X.index[i]) 
----> 3     temp_y = y.drop(y.index[i]) 
      4     temp_y = temp_y.values.ravel() 
      5     rfregressor = RandomForestRegressor(max_depth=4, random_sta
te=5) 
 AttributeError: 'numpy.ndarray' object has no attribute 'drop'
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In [889]:
LR.summary() 
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In [967]:
X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 5) 
rfregressor = RandomForestRegressor(max_depth=4, random_state=5) 
rfregressor.fit(X, y)  
np.sqrt(np.mean((rfregressor.predict(X_test) - y_test)**2)) 

In [968]:
rfregressor.predict(health_index.iloc[12, [3, 4, 5, 7, 9, 11, 12]].valu
es.reshape(1, -1)) 

In [969]:
health_index.iloc[12, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1) 

In [974]:
rfregressor.predict(np.array([6732219, 90, 119.6285983367688, 0, 1, 2, 
0.1508273869284407]).reshape(1, -1)) 

In [894]:
def pred_ints(model, X, percentile=95): 
    err_down = [] 
    err_up = [] 
    perc_50 = [] 
    for x in range(len(X)): 
        preds = [] 
        for pred in model.estimators_: 

  N
otes: 

[1] Standard Errors assum
e that the covariance m

atrix of the errors is correctly specified. 
[2] The condition num

ber is large, 4.48e+08. This m
ight indicate that there are 

strong m
ulticollinearity or other num

erical problem
s.

Out[967]:
0.6237966692301442

Out[968]:
array([0.91188192])

Out[969]:
array([[6732219, 38, 119.6285983367688, 0, 1, 2, 0.1508273869284407]], 
      dtype=object)

Out[974]:
array([-0.44019457])
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            preds.append(pred.predict(X_test.iloc[x,].values.reshape(1,
 -1))) 
        err_down.append(np.percentile(preds, (100 - percentile) / 2. )) 
        perc_50.append(np.percentile(preds, 50)) 
        err_up.append(np.percentile(preds, 100 - (100 - percentile) / 
2.)) 
    return err_down, err_up, perc_50 

In [895]:
pred_ints(rfregressor, X_test, percentile=90) 

In [896]:
truth = y_test 
correct = 0. 
for i, val in enumerate(truth): 
    if err_down[i] <= val <= err_up[i]: 

Out[895]:
([-0.05961785228657985, 
  -0.4542011945606605, 
  -1.402898366266888, 
  0.05793002951319271, 
  -1.6335839801633703, 
  -1.3699375805583438, 
  -2.3959525587486623, 
  -1.2957746038908695], 
 [1.3964562451662454, 
  2.1591891992336145, 
  1.013029230539649, 
  3.1787760193110546, 
  0.25891439842809855, 
  2.125244968632568, 
  0.346541445223477, 
  1.1085055967097148], 
 [0.5930460748795401, 
  0.22284549804590875, 
  -0.9974719242363628, 
  3.1787760193110546, 
  -0.5435340548379382, 
  0.6676628911436999, 
  -2.049393386451893, 
  0.1440144428018571])
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        correct += 1 
print(correct/len(truth)) 

In [897]:
np.std(y_test) 

In [898]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_test), y_test) 
correlation = correlation_matrix[0,1] 
r_squared = correlation**2 
r_squared 

In [899]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_train), y_train) 
correlation_xy = correlation_matrix[0,1] 
r_squared = correlation_xy**2 
r_squared 

In [900]:
#r2_score(y_test, rfregressor.predict(X_test)) 

In [901]:
#r2_score(y_train, rfregressor.predict(X_train)) 

In [902]:
sns.scatterplot( 
    x='Lockdown Length', 
    y='Health Index', 
    data=health_index 
) sns.despine()  

0.5 

Out[897]:
1.5000959095201696

Out[898]:
0.9253695974295977

Out[899]:
0.8688545829255999

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D



In [903]:
fig = plt.figure() 
ax1 = fig.add_subplot(111) 
 ax1.scatter(X_test.iloc[:,1], y_test, s=10, c='b', marker="s", label='a
ctual') 
ax1.scatter(X_test.iloc[:,1], rfregressor.predict(X_test), s=10, c='r',
 marker="o", label='predicted') 
plt.legend(loc='upper right') 
plt.show() 
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In [904]:
#partial dependency - lockdown length 
#my_plots = plot_partial_dependence(rfregressor, features=[1], X=X_trai
n, grid_resolution=10) 

In [905]:
def plot_pdp(model, X, feature, target=False, return_pd=False, y_pct=Tr
ue, figsize=(10,9), norm_hist=True, dec=.5): 
    # Get partial dependence 
    pardep = partial_dependence(model, X, [feature]) 
     
    # Get min & max values 
    xmin = pardep[1][0].min() 
    xmax = pardep[1][0].max() 
    ymin = pardep[0][0].min() 
    ymax = pardep[0][0].max() 
     
    # Create figure 
    fig, ax1 = plt.subplots(figsize=figsize) 
    ax1.grid(alpha=.5, linewidth=1) 
     
    # Plot partial dependence 
    color = 'tab:blue' 
    ax1.plot(pardep[1][0], pardep[0][0], color=color) 
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    ax1.tick_params(axis='y', labelcolor=color) 
    ax1.set_xlabel(feature, fontsize=14) 
     
    tar_ylabel = ': {}'.format(target) if target else '' 
    ax1.set_ylabel('Partial Dependence{}'.format(tar_ylabel), color=col
or, fontsize=14) 
     
    tar_title = target if target else 'Target Variable' 
    ax1.set_title('Relationship Between {} and {}'.format(feature, tar_
title), fontsize=16) 
     
    if y_pct and ymin>=0 and ymax<=1: 
        # Display yticks on ax1 as percentages 
        fig.canvas.draw() 
        labels = [item.get_text() for item in ax1.get_yticklabels()] 
        labels = [int(np.float(label)*100) for label in labels] 
        labels = ['{}%'.format(label) for label in labels] 
        ax1.set_yticklabels(labels) 
     
    # Plot line for decision boundary 
    ax1.hlines(dec, xmin=xmin, xmax=xmax, color='black', linewidth=2, l
inestyle='--', label='Decision Boundary') 
    ax1.legend() 
     ax2 = ax1.twinx() 
    color = 'tab:red' 
    ax2.hist(X[feature], bins=80, range=(xmin, xmax), alpha=.25, color=
color, density=norm_hist) 
    ax2.tick_params(axis='y', labelcolor=color) 
    ax2.set_ylabel('Distribution', color=color, fontsize=14) 
     
    if y_pct and norm_hist: 
        # Display yticks on ax2 as percentages 
        fig.canvas.draw() 
        labels = [item.get_text() for item in ax2.get_yticklabels()] 
        labels = [int(np.float(label)*100) for label in labels] 
        labels = ['{}%'.format(label) for label in labels] 
        ax2.set_yticklabels(labels) 
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    plt.show() 
     
    if return_pd: 
        return pardep 

In [906]:
plot_pdp(rfregressor, X, 'Lockdown Length', target='Health Index') 

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
rning: 
 FixedFormatter should only be used together with FixedLocator 
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In [907]:
#partial dependency - added levels 
#my_plots = plot_partial_dependence(rfregressor, features=[5], X=X_trai
n, grid_resolution=10) 

In [908]:
plot_pdp(rfregressor, X, 'Added Levels', target='Health Index') 

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
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In [909]:
perm = PermutationImportance(rfregressor, random_state=1).fit(X_test, y
_test) 
eli5.show_weights(perm, feature_names = X_test.columns.tolist()) 

rning: 
 FixedFormatter should only be used together with FixedLocator 
 

Out[909]:
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In [1006]:
econ_index = econ_index.rename(columns = {'State ':"State"}) 
econ_index = econ_index.rename(columns = {'indexes':"Economic Index"}) 
econ_index["State"] = econ_index["State"].apply(lambda x: x.strip()) 
econ = pd.merge(health_index, econ_index, on='State') 
econ 

Ou
[909]

g

W
e

ig
h

t
F

e
a

tu
r
e

1.0898 ± 0.7635
Lockdow

n Length

0.1605 ± 0.2849
Population 2019

0.0799 ± 0.1081
D

em
ocrat

0.0658 ± 0.0337
D

ensity
0.0390 ± 0.0582

R
epublican

0.0223 ± 0.0577
Share_65

0.0041 ± 0.0090
Added Levels
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In [1007]:
X = econ.iloc[:, [3, 4, 5, 7, 9, 11, 12]] 
#X = X.drop(X.index[12]) 
y = econ.iloc[:, [20]] 
#y = y.drop(y.index[12]) 
y = y.values.ravel() 

In [924]:
for i in range(len(y)): 
    temp_X = X.drop(X.index[i]) 
    temp_y = y.drop(y.index[i]) 
    temp_y = temp_y.values.ravel() 
    rfregressor = RandomForestRegressor(max_depth=4, random_state=5) 
    rfregressor.fit(temp_X, temp_y)  
    print(i, rfregressor.predict(econ.iloc[i, [3, 4, 5, 7, 9, 11, 12]].
values.reshape(1, -1))-econ.iloc[i, [20]].values) 
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5 [1.5197627420769493] 
6 [6.111596366163483] 
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In [996]:
rfregressor.predict(econ.iloc[12, [3, 4, 5, 7, 9, 11, 12]].values.resha
pe(1, -1)) 

In [ ]:
econ.iloc[, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1) 

8 [3.5506208604422946] 
9 [-15.548246228110244] 
10 [5.204449459171856] 
11 [-1.8903128147384116] 
12 [0.6793355036391016] 
13 [2.5618318810547454] 
14 [-4.033065277731541] 
15 [6.780683667455127] 
16 [-5.743404905351756] 
17 [-13.120489014626042] 
18 [7.11796592831533] 
19 [-0.18102724415151528] 
20 [3.7858993358168456] 
21 [5.611580732228454] 
22 [-23.839003437913473] 
23 [-2.659716004869784] 
24 [-2.412545524712864] 
25 [11.176238851611473] 
26 [0.8675843208921528] 
27 [3.9584705093218755] 
28 [1.1465740464271912] 
29 [-1.7293615539129694] 
30 [1.7773994092388787] 
31 [-7.105433471472004] 
32 [-1.4351703673626746] 
33 [-1.5698588400372309] 
34 [0.9426351270740201] 
35 [10.323754889382641] 
36 [-0.5063809836092497] 
37 [8.872957948224256] 
38 [-3.617719032244981] 
39 [-1.662435439371683] 

Out[996]:
array([2.97258068])
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In [704]:
LR = sm.OLS(y, X).fit() 
LR.summary() 
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In [1008]:
X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 0) 
rfregressor = RandomForestRegressor(max_depth=2, random_state=0) 
rfregressor.fit(X, y)  
np.sqrt(np.mean((rfregressor.predict(X_test) - y_test)**2)) 

In [998]:
y 

In [1009]:
rfregressor.predict(econ.iloc[0, [3, 4, 5, 7, 9, 11, 12]].values.reshap
e(1, -1)) 

In [1010]:
econ.iloc[0, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1) 

  N
otes: 

[1] Standard Errors assum
e that the covariance m

atrix of the errors is correctly specified. 
[2] The condition num

ber is large, 4.48e+08. This m
ight indicate that there are 

strong m
ulticollinearity or other num

erical problem
s.

Out[1008]:
6.3562407944387225

Out[998]:
array([-2.18159879, -0.35539157, -2.92476745, -2.93690662, -6.13638926, 
        3.0839055 , -4.20387385,  0.65645336, -3.10261679, 14.8710528 , 
       -4.17911353,  4.24575168,  2.42697252, -3.61651444,  2.38277479, 
       -4.45891129,  4.25979085, 13.40087701, -5.79456245,  0.40751059, 
       -4.3937593 , -3.79232787, 20.86150866,  4.19638493,  3.65887747, 
       -4.01783013,  2.88852179, -0.55614195,  3.7078234 ,  0.3058497 , 
        2.31902801,  5.80890427, -1.01599634,  0.25991562, -0.45189116, 
       -5.56879575,  2.14758381, -4.62135535,  3.44136913,  1.7367593
9])

Out[1009]:
array([-1.43193918])

Out[1010]:
array([[4903185, 26, 93.53117906262518, 0, 1, 1, 0.16540024494282798]], 
      dtype=object)
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In [1017]:
rfregressor.predict(np.array([4903185, 60, 93.53117906262518, 0, 1, 1, 
0.16540024494282798]).reshape(1, -1)) 

In [706]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_test), y_test) 
correlation = correlation_matrix[0,1] 
r_squared = correlation**2 
r_squared 

In [707]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_train), y_train) 
correlation = correlation_matrix[0,1] 
r_squared = correlation**2 
r_squared 

In [708]:
# r2_score(y_test, rfregressor.predict(X_test)) 

In [709]:
plt.scatter(X.iloc[:, 1], y) 

Out[1017]:
array([-0.04315836])

Out[706]:
0.3328969578527192

Out[707]:
0.7499976542385185

Out[709]:
<matplotlib.collections.PathCollection at 0x11f902490>
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In [710]:
#partial dependency (added levels) 
#my_plots = plot_partial_dependence(rfregressor, features=[5], X=X, gri
d_resolution=10) 

In [1004]:
plot_pdp(rfregressor, X, 'Lockdown Length', target='Economic Index') 

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
rning: 
 FixedFormatter should only be used together with FixedLocator 
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In [598]:
#partial dependency (lockdown length) 
#my_plots = plot_partial_dependence(rfregressor, features=[1], X=X, gri
d_resolution=10) 
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In [1005]:
plot_pdp(rfregressor, X, 'Added Levels', target='Economic Index') 

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:33: UserWa
rning: 
 FixedFormatter should only be used together with FixedLocator 
 /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
rning: 
 FixedFormatter should only be used together with FixedLocator 
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In [640]:
fig = plt.figure() 
ax1 = fig.add_subplot(111) 
 ax1.scatter(X_test.iloc[:,1], y_test, s=10, c='b', marker="s", label='a
ctual') 
ax1.scatter(X_test.iloc[:,1], rfregressor.predict(X_test), s=10, c='r',
 marker="o", label='predicted') 
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plt.legend(loc='upper right') 
plt.show() 

In [713]:
perm = PermutationImportance(rfregressor, random_state=1).fit(X_test, y
_test) 
eli5.show_weights(perm, feature_names = X_test.columns.tolist()) 

In [ ]:
  

Out[713]:
W

e
ig

h
t

F
e

a
tu

r
e

-0.0026 ± 0.0118
Added Levels

-0.0053 ± 0.0516
R

epublican
-0.0567 ± 0.1146

Population 2019
-0.0960 ± 0.5125

D
ensity

-0.1043 ± 0.0286
D

em
ocrat

-0.2388 ± 0.3275
Share_65

-0.4528 ± 1.1405
Lockdow

n Length
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