# ECONOMICS OF COVID-19 LOCKDOWNS:

Optimizing the Lockdown Health-Economy Tradeoff

Team Woahhhh David Fan, Isabelle Tao, Lucy Cao, Emma Lu

> WHARTON HACKATHON COVID AND THE ECONOMY

#### WHARTON HACKATHON COVID AND THE ECONOMY



TEAM

#### DAVID FAN • Manila, Philippines

David is studying towards both a MSE in Data Science and a BS in Economics. As an aspiring data scientist, David has interned at Facebook and Grab in Data Science roles over the past summers. He also heads the Analytics department at the Daily Pennsylvanian. David enjoys Chinese rap music, sitcoms, and NBA statistics.



#### **ISABELLE TAO** • Singapore, Singapore

Isabelle is a senior concentrating in Business Analytics at the University of Pennsylvania. She interned at McKinsey & Company as a Business Analyst in the digital practice the past summer, where she enjoyed working on digital transformation for large companies in the consumer electronics industry. She also enjoys brewing Kombucha and watercoloring.



#### LUCY CAO • Shanghai, China

Lucy is a senior at the University of Pennsylvania majoring in Cognitive Science and Computer Science. This past summer, Lucy worked at McKinsey & Company as a Summer Analytics Fellow transforming businesses' decision-making with advanced analytics. In her free time, she likes to make song covers and visit escape the rooms.



#### EMMA LU • Vancouver, Canada

Emma is a senior in the Roy & Diana Vagelos Life Sciences and Management program at the University of Pennsylvania. She is majoring in Computational Biology, Finance, and Statistics. Over the summer, Emma worked at Bain & Company as a Associate Consultant Intern advising clients on investment decisions. Her hobbies include reading biographies, hiking, and gardening.

# ABSTRACT

Executive Summary Key Takeaways WHARTON HACKATHON COVID AND THE ECONOMY

#### BACKGROUND

The Covid-19 pandemic has forced many countries to use lockdowns as a public health measure to prevent further spread of the disease, often at the expense of slowed economic activities. The lockdown-induced trade-off between economic and health outcomes has underscored the importance to evaluate the **effectiveness of lockdowns**.

We focus on the US economy given its leading world count in Covid-19 cases and its economy's influence on the global economy. In addition, US states have experienced varying levels of lockdown success, allowing for further investigation. We evaluated the health and economic outcomes of different US state lockdown policies that vary in **duration and stringency**, adjusted based on the states' characteristics, to determine the optimal lockdown policies that would maximize both health and economic outcomes.

#### METHODOLOGY

To understand the effects of lockdown, we first created created an index that tracks multiple health and economic indicators for each of the 50 states when the lockdown policies were imposed. This was done by first standardizing these metrics and feeding them through a Principal Component Analysis (PCA).

Then we selected control variables (Population Density, Population Size, Political Leaning, and Share of Population above 65 years old) that might also play a part on lockdown outcomes independent of government intervention. Finally, lever variables (Duration and Stringency of lockdown) were selected for their direct relationship to the characteristic of the lockdown.

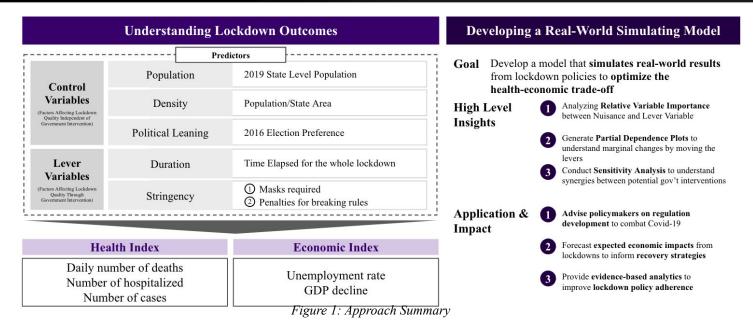
We further analyzed the relative variable importance between the nuisance and lever variables, generated Partial Dependence Plots to understand each lever's marginal effects, and conducted a case study to understand the synergies between potential government interventions.

#### **KEY OBSERVATIONS**

- 1. Lockdown length is more important than lockdown stringency to contain the virus. Our analysis shows that the longer the length of the lockdown, the more effective the lockdown is. Stringency on the other hand, has an inverse effect on the health index. This means that states with more stringent lockdowns actually promotes more rebellious behavior which causes more deaths, hospitalizations and spikes in cases.
- 2. Lockdown length and stringency are both not strongly correlated with decline in GDP and increase in unemployment.

While it is common to assume that the longer the lockdown, the worse the length of the state of the economy, our analysis shows that that is not the case. Given alternative consumption methods (online shopping) and alternative working options (work from home), consumption and productivity can still be sustained. This is aligned with results globally: the actual or expected drop in GDP, across OECD countries is not as strongly correlated with lockdown lengths or stringency. (McKinsey Analytics)

3. The most effective lockdown duration is between 55 and 60 days.


We found that there is a golden period where lockdowns are the most effective. When the lockdown is below 55 days, it's insufficient to cause a decline in cases. When the lockdown is above 60 days, there is essentially no effect for both health index and economic index.

#### **NEXT STEPS**

First, we hope to incorporate more **granular county level data**, so we can add in more control variables and obtain results that are of higher statistical significance. Second, we hope to **extend these results globally** to check if our observations apply to global situations.

#### Background Analytical Approach

WHARTON HACKATHON COVID AND THE ECONOMY



#### Introduction

Covid-19 lockdowns have been implemented around the world for public health reasons. While lockdowns are undoubtedly an **effective public health measure**, they also **limit economic activities** and **negatively affect economic growth**. For example, the US, leading the world charts with over 7 million Covid-19 cases, had a GDP fall of 32.9% (annualized rate) in Q2 2020, the lowest since 1947.

Policymakers are faced with the challenge of **balancing the health and economic trade-off**. If a lockdown is lifted too quickly, it could cause a re-surge in cases, resulting in more lockdowns. Alternatively, a lockdown that is too long could cause detriments to the economy that will take years to recover. Our knowledge of the lockdown's effectiveness is limited and there are few historical data references. With over six months of current data and different states employing different policies, it is possible to **empirically assess the outcomes** from these lockdowns to derive additional understandings of the **optimal trade-off**.

We aim to create a model that stimulates real-world reactions at the state-level towards different lockdown policies. The model will allow policymakers to forecast lockdown effectiveness and economic impacts. Our model can also be used as an evidence-based argument to improve policy adherence.

#### **Analytical Approach**

While Covid-19 lockdowns have garnered much interest from health and economic experts, there still remain many gaps in the literature of assessing the effect of lockdown measure that we aim to investigate.

#### **Index Construction**

First, we needed a metric that will allow us to measure the **health and economic outcomes of lockdowns**. Since outcomes can be measured using many indicators, we created **two indices that combined relevant variables** to track the health and economic outcomes of a state's lockdown policy.

These indicators were created through **factor analysis** where we utilized the top Principal Component across individual indicators. This served 2 main purposes; first, we want to be able to **isolate the underlying latent state of either health or economics that causes the observables** as opposed to relying on the observed metrics themselves. This is because metrics observed (death, cases in the health cases, or GDP and unemployment in the econ cases) are subjected to some degree of randomness and may therefore individually exhibit variation that would add noise to our data. Secondly, the creation of indexes lessens additional model we need to run in order to incorporate various health outcomes, drastically simplifying the process.

Index Construction Variable Selection WHARTON HACKATHON COVID AND THE ECONOMY

#### **Health Index**

The Health Index is created to access the coronavirus cases in states during the lockdown. The higher the absolute number of the health index, the worse the performance of the lockdown. Given that this measure is a gradient, we opted to focus on the percentage decline of 3 key health attributes: **daily number of deaths, number of hospitalized, and number of cases.** 

We obtained the decline rate of each of these 3 health attributes during the lockdown using the following method. First, we obtained the **highest number for each of these 3 metrics** during the lockdown. Next, we extracted these **3 metrics on the last day** of the lockdown. Lastly, we divided the final day metric by the maximum metric to get the gradient change during the period.

### $Gradient = rac{Final \ Day \ Number}{Maximum \ Number}$

In simple terms, the higher the gradient change ratio, the less effective the lockdown is, because the lockdown did not improve the health metric as expected. If the ratio is low, it indicates that the lockdown is effective in lowering the cases from the peak.

As indicated earlier, we wanted to combine these 3 high level metrics into one overall indicator. This was done by first standardizing these metrics and feeding them through a Principal Component Analysis (PCA). As expected, the leading principal component was able to explain 52% of the variation in these metrics, making it a fair representation of the underlying health traits. The loading score of the aforementioned indicator are all around 0.5, indicating that a one unit increase in health index correspond to half a standard deviation increase gradient change, pointing to a less effective lockdown.

#### **Economic Index**

Similar to the health index, the economic index is created to gauge the overall decline in state economic condition. This measure was done with the use of gradient change for 2 metrics: GDP decline from 2019 Q4 to 2020 Q1, and unemployment rate increase from February 2020 to April 2020.

Since both metrics were already in their natural percentage format, rescaling is no longer necessary. We simply performed our factor analysis using **PCA on both these gradients.** 

The leading component using the PCA was able to explain 71% of the total variation in the gradient once again, making a viable candidate to represent the underlying economic drivers. The loading vectors for GDP change is -0.7 and 0.7 for unemployment change. This means as one unit of economic index increases, we would expect the GDP to decrease by 0.7% while unemployment rate to increase by 0.7%.

#### **Control Variables and Lever Variables**

After constructing the indexes needed for our target variable, we now move on to create the left hand side of our equation, or the x-variables.

When considering our x-variables, we looked at variables that may affect our aforementioned indexes independent of any kind of intervention that the government attempts. We refer to these variables as our control variables. While it may be ideal to include as many control variables as possible to create impartial results, since we are using state level dataset with limited amount of observations (50 states at most), to avoid the curse of dimensionality problem, we opted to only include 4 main control variables: Population Density, Population, Political Leaning and Share of Population above 65 years old. These variables are selected due to how they may directly affect the indexes at hand without the Gov't intervention.

For our lever variables, we selected two main characteristic related lockdown: **the length of the lockdown and the relative stringency of lockdown** which is anchored on two characteristics: 1) Whether the state required masks and 2) whether the state implemented a penalty for violating the rules

Model Performance Feature Interpretations WHARTON HACKATHON COVID AND THE ECONOMY

#### **Initial Model Performance**

We performed an initial linear regression model to assess the relationship between lockdown length and the health index. We found that the linear regression model gave us an **r-squared of 0.279** and we also found **the lockdown length variable to be statistically significant** with a p-value of 0.035. Similarly, we fitted a second linear regression model to **evaluate the relationship between lockdown length and the economic index.** We found that this linear regression model had an r-squared of 0.262. In this model, we found that **the republican feature is statistically significant with a p-value of 0.020.** 

#### **Improved Model Performance**

We then performed a **random forest model to account for potentially non-linear relationships between the variables and the indices** as well as increase predictive power of our modeling. Moreover, through partial dependence plots we can better understand the marginal effect of the length and stringency of lockdown on economic and health outcomes. We first performed a 20% split on the data set, with 80% of the data in the training set and 20% of the data in the test set.

This model gave us a **better predictive ability overall for our dataset.** This includes a 0.9 r-squared for our training dataset and a 0.4 r-squared for our test dataset when predicting the health indexes and 0.75 r-squared for our training dataset and a 033 r-squared for our test dataset when predicting the econ indexes. We then set out to draw additional inference from the model.

#### Variable Relative Importance

First we aim to analyze the variable importance information within our two models. Starting off with the health index model.

| Weight               | Feature         |
|----------------------|-----------------|
| $0.5357 \pm 0.4113$  | Lockdown Length |
| $0.0115 \pm 0.2518$  | Population 2019 |
| $0.0106 \pm 0.0108$  | Added Levels    |
| $0.0096 \pm 0.0161$  | Republican      |
| $-0.0015 \pm 0.0055$ | Democrat        |
| $-0.0565 \pm 0.1245$ | Density         |
| $-0.1444 \pm 0.1540$ | Share_65        |

Table 1: Feature Importance of Health Index

It is apparent from the variable importance plot that the lockdown length is by far the most important variable in our dataset superseding even the control variables that we have included. This generally is in line with our hypothesis that the length of lockdown will very likely benefit the states in terms of containing the spread of the virus.

Stringency of lockdowns, on the other hand, represented by the added levels variable, **ranks third in importance**, indicating that it does somewhat still have an effect on the indexes but just not as apparent as the length itself. This can be an artifact of the majority perception of lockdown such that most individuals are likely to abide by the rules regardless of stringency

For the econ model on the other hand,

| Weight               | Feature         |
|----------------------|-----------------|
| $-0.0026 \pm 0.0118$ | Added Levels    |
| $-0.0053 \pm 0.0516$ | Republican      |
| $-0.0567 \pm 0.1146$ | Population 2019 |
| $-0.0960 \pm 0.5125$ | Density         |
| $-0.1043 \pm 0.0286$ | Democrat        |
| $-0.2388 \pm 0.3275$ | Share_65        |
| $-0.4528 \pm 1.1405$ | Lockdown Length |

Table 2: Feature Importance for Economic Index

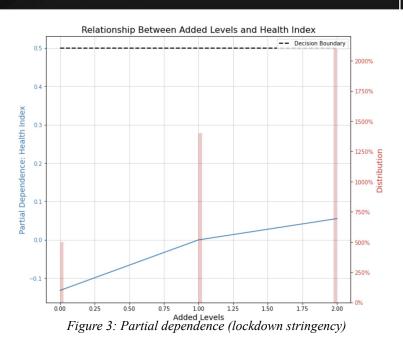
the variable importance is rather interesting. No individual variable stood out too strongly in terms of how irreplaceable it is in our model. It is especially quite interesting to see that the Lockdown Length actually did not seem to impact the econ index at all from a variable importance point of view. These results regardless should be taken with a grain of salt given the huge variation around the weight of these variables. Nonetheless, an insight from this point of view is that the economic downfall during COVID may not necessarily be as related to the lockdown given the rise of alternative consumption methods and alternative work opportunities.

#### **Partial Dependence Plots**

We now want to take a deep-dive into the health index model and examine the two lever variables of interest that we have identified: Lockdown length and stringency. This is specifically done for the health index case as it is in there that both lockdown length and added levels were most significant

#### Partial Dependence Discussion & Conclusion

# Relationship Between Lockdown Length and Health Index


Figure 2: Partial dependence (lockdown length)

The deep dive into the partial dependence plots shed light on something extremely interesting. As expected, the partial dependence plots for the lockdown periods follows a negative relationship with the health index (i.e., as lockdown length increases, we see a greater reduction in cases from the peak). The effect is actually not fully continuous but there is a sharp increase in effectiveness of lockdown at around 55-60 days and later remains flat. While not conclusive, this gives us an idea to the ideal lockdown period.

Another interesting insight that emerged is that **lockdown stringency actually may trigger an inverse reaction** that governments do not expect. Specifically, we saw that as stringency increases, the health index actually rose gradually, indicating a less effective lockdown. This is likely due to individuals feeling too suppressed and constrained by the lockdown and end up not abiding by the lockdown rules altogether.

#### **Case Studies**

In order to better understand the effect of lockdown length on the health and economic outcomes, we decided to look more closely at how states health and economic indices change when lockdown lengths are altered. For Texas, with an original 30-day lockdown, we predicted the health index to be 0.82. However, when we extend this lockdown period to 60 days, the health index decreases to -0.61 and when we further



WHARTON

ATHON

COVID AND THE ECONOMY

extend this lockdown period to 90 days, the health index decreases to -0.84. This result is consistent with our finding that longer lockdowns lead to better containment of the disease and better health outcomes. We also took a look at the economic index and found that adjusting the lockdown period does not drastically affect the economic index. For the state of Alabama, we notice that the economic index with the original 26-day lockdown is predicted to be -1.43 while an extension of the lockdown to 40 days gives us an economic index of -0.21 and an extension to 60 days gives us a new prediction of -0.05.

#### **Conclusion & Next Steps**

This study from a theoretical level showed that lockdown length, stringency and efficiency is not a purely additive function. Lockdown length and stringency does not have a positive linear function with improved health outcomes. Instead, the the best approach to achieve an efficient lockdown is often a combination the right length with a lesser emphasis on stringency. Furthermore we also explored and realized that the lockdown length and stringency does not drastically affect the economic status of states due to the rise of other opportunities.

In the future, we wish to extend this study to a county but also a global level in order to incorporate more control variables but also allow us to create statistical models with more confidence from more observations.

# SOURCES

#### Data Sets:

- 1. **Population.csv:** Population of each state (<u>https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html</u>)
- 2. Area.csv: Area of each state (<u>https://www.kaggle.com/giodev11/usstates-dataset?select=state-areas.csv</u>)
- 3. Deaths.csv: Number of deaths during the lockdown (<u>https://covidtracking.com/data</u>)
- 4. Hospitalized.csv: Number of hospitalizations during the lockdown (<u>https://covidtracking.com/data</u>)
- 5. Cases.csv: Total number of cases during the lockdown (<u>https://covidtracking.com/data</u>)
- 6. **Unemployment.csv:** Unemployment rate of each state from March 2020 July 2020 (<u>https://carsey.unh.edu/COVID-19-Economic-Impact-By-State</u>)
- 7. **GDP.csv:** GDP change from each state from Q4 2019 to Q1 2020 (<u>https://www.bea.gov/data/gdp/gdp-state</u>)

#### **References:**

McKinsey & Company (2020), *More stringent lockdowns aren't necessarily worse for GDP* <u>https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/covid-19-saving-thousands-of-lives-and-trillions-in-livelihoods</u>

#### Code:

1. **Python** and **Jupyter Notebook** were primarily used for data wrangling, EDA, and preliminary visualization. We used standard libraries such as **pandas**, **numpy**, **matplotlib**, **seaborn**, **scipy**, etc.

#### WHARTON HACKATHON covid and the <u>economy</u>

#### **Appendix 1: Model Specifications**

| Dep. Variable:    |                   | у               | R-sq            | uared:         | 0.291     |          | Dep. Variable:    |               | у                | R-squa           | red:   | 0.262     |          |
|-------------------|-------------------|-----------------|-----------------|----------------|-----------|----------|-------------------|---------------|------------------|------------------|--------|-----------|----------|
| Model             | :                 | OLS A           | dj. R-sq        | uared:         | 0.163     |          | Model:            |               | OLS A            | dj. R-squa       | red:   | 0.127     |          |
| Method            | Least Sq          | uares           | F-sta           | tistic:        | 2.263     |          | Method:           | Least Squ     | lares            | F-stati          | stic:  | 1.949     |          |
| Date              | Fri, 25 Sep       | 2020 <b>Pro</b> | b (F-stat       | tistic):       | 0.0614    |          | Date:             | Fri, 25 Sep 2 | 2020 <b>Prok</b> | ) (F-statis      | tic):  | 0.102     |          |
| Time:             | 16:               | 13:37 L         | og-Likel        | ihood:         | -59.017   |          | Time:             | 14:4          | 40:10 <b>Lo</b>  | g-Likelih        | ood: · | -72.455   |          |
| No. Observations: | :                 | 40              |                 | AIC:           | 132.0     |          | No. Observations: |               | 40               |                  | AIC:   | 158.9     |          |
| Df Residuals:     | :                 | 33              |                 | BIC:           | 143.9     |          | Df Residuals:     |               | 33               |                  | BIC:   | 170.7     |          |
| Df Model:         | :                 | 6               |                 |                |           |          | Df Model:         |               | 6                |                  |        |           |          |
| Covariance Type:  | nonr              | obust           |                 |                |           |          | Covariance Type:  | nonro         | obust            |                  |        |           |          |
|                   |                   |                 |                 | <b>D</b> . 141 | 10.005    | 0.0751   |                   | coef          | std err          | t                | P> t   | [0.025    | 0.975]   |
|                   | coef              | std err         |                 | P> t           | [0.025    | 0.975]   | Population 2019   | -3.932e-09    | 4.52e-08         | -0.087           | 0.931  | -9.59e-08 | 8.81e-08 |
| Population 2019   |                   |                 | 1.130           | 0.266          | -2.92e-08 | 1.02e-07 | Lockdown Length   | 0.0223        | 0.021            | 1.043            | 0.304  | -0.021    | 0.066    |
| Lockdown Length   |                   | 0.015           | -2.167          | 0.038          | -0.064    | -0.002   | Density           | -0.0001       | 0.000            | -0.635           | 0.530  | -0.001    | 0.000    |
| Density           |                   | 0.000           | -0.818          | 0.419          | -0.000    | 0.000    | Democrat          | -4.5396       | 2.261            | -2.008           | 0.053  | -9.140    | 0.061    |
| Democrat          |                   | 1.616           | 1.463           | 0.153          | -0.924    | 5.652    | Republican        | -5.1084       | 2.097            | -2.436           | 0.020  | -9.375    | -0.841   |
| Republican        |                   | 1.499           | 1.574           | 0.125          | -0.691    | 5.408    | Added Levels      | -0.1435       | 0.422            | -0.340           | 0.736  | -1.002    | 0.715    |
| Added Levels      |                   | 0.302           |                 | 0.328          | -0.314    | 0.913    | Share_65          | 26.7997       | 12.788           | 2.096            | 0.044  | 0.783     | 52.816   |
| Share_65          | -8.4979           | 9.139           | -0.930          | 0.359          | -27.091   | 10.095   |                   |               |                  |                  |        |           |          |
| Omnibus:          | 0.684 Du          | rbin-Watso      | on:             | 1.989          |           |          | Omnibus:          |               | irbin-Watso      |                  | .864   |           |          |
| Prob(Omnibus):    | 0.710 <b>Jarq</b> | ue-Bera (JI     | 3):             | 0.706          |           |          | Prob(Omnibus):    | •             | ue-Bera (JI      |                  | .573   |           |          |
| Skew:             | 0.010             | Prob(JI         | 3):             | 0.703          |           |          | Skew:             | 0.788         | Prob(JI          | -                |        |           |          |
| Kurtosis:         | 2.350             | Cond. N         | <b>lo.</b> 4.48 | 8e+08          |           |          | Kurtosis:         | 6.415         | Cond. N          | <b>lo.</b> 4.48e | 9+08   |           |          |
|                   |                   |                 |                 |                |           |          |                   |               |                  |                  |        |           |          |

Figure 4: Linear Regression Health Index

Figure 5: Linear Regression Econ Index

# APPENDIX

#### WHARTON HACKATHON COVID AND THE ECONOMY

#### **Appendix 2:**

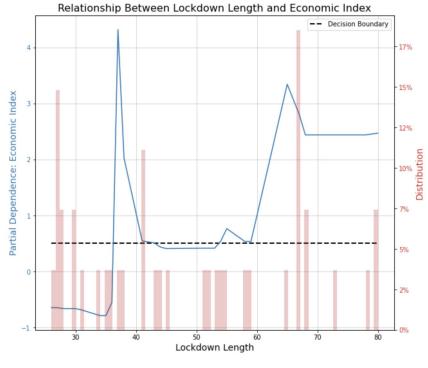



Figure 6

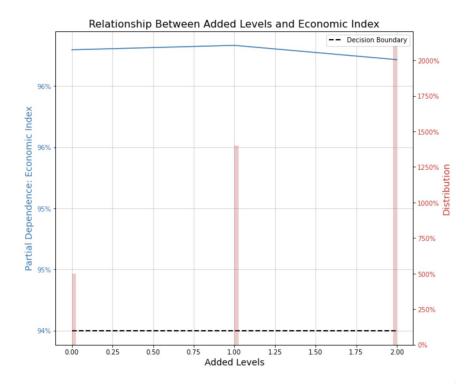



Figure 7

|                                                      | Out[25]: | In [25]: | In [23]:                                                                                                       | In [6]:                                                                       |                                                                       |                                                                                                                                    | In [1]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                    |          | sp       | ds = p<br>ag_nam                                                                                               | driver                                                                        | driver                                                                | #Inser<br>from s<br>from w                                                                                                         | <pre>import pa<br/>from matp<br/>import nu<br/>from bs4<br/>import re<br/>from sele<br/>from sele</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Alabama                                              | 0        |          | d.DataFram<br>le(' <mark>td</mark> ')],(                                                                       | .get('http                                                                    | = webdriv                                                             | t chrome d<br>elenium im<br>ebdriver m                                                                                             | <pre>import pandas as pd from matplotlib imp import numpy as np from bs4 import Bea import requests from selenium.webdr from s</pre> |
| April 4 - April 30;<br>Penalties not<br>mentioned.   | <b>_</b> |          | <pre>ds = pd.DataFrame(np.reshape([i.<br/>ag_name('td')],(51,5)).tolist())</pre>                               | s://infogram.                                                                 | er.Chrome(Chr                                                         | #Insert chrome driver directory here<br>from selenium import webdriver<br>from webdriver manager.chrome import                     | <pre>import pandas as pd from matplotlib import pyplot as plt import numpy as np from bs4 import BeautifulSoup import requests from selenium.webdriver import Chrome from selenium.webdriver.common.action from selenium.webdriver.common.by imp from selenium.webdriver.support.ui im from selenium.webdriver.support.ui im from selenium.webdriver.support.expec f_element_located, element_to_be_clic import os</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Alabama has<br>reopened retail<br>stores, restaurant | 2        |          | <pre>[i.text for i i ())</pre>                                                                                 | <pre>com/reopening-c</pre>                                                    | <pre>driver = webdriver.Chrome(ChromeDriverManager().install())</pre> | #Insert chrome driver directory here<br>from selenium import webdriver<br>from webdriver manager.chrome import ChromeDriverManager | <pre>import pandas as pd from matplotlib import pyplot as plt import numpy as np from bs4 import BeautifulSoup import requests from selenium.webdriver import Chrome from selenium.webdriver.support.select import Select from selenium.webdriver.common.action_chains import Act from selenium.webdriver.common.by import Keys from selenium.webdriver.support.ui import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support.ui import webDriverWait from selenium.webdriver.support.expected_conditions imp f_element_located, element_to_be_clickable</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Yes – required for<br>anyone older than<br>age 6 on  | з        |          | <pre>= pd.DataFrame(np.reshape([i.text for i in driver.find_elements_by_t _name('td')],(51,5)).tolist())</pre> | <pre>driver.get('https://infogram.com/reopening-chart-lh7j4dmw0wqx4nr')</pre> | <pre>pr().install())</pre>                                            | )riverManager                                                                                                                      | <pre>import pandas as pd from matplotlib import pyplot as plt import numpy as np from bs4 import BeautifulSoup import requests from selenium.webdriver.support Chrome from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import By from selenium.webdriver.support.expected_conditions import visibility_o f_element_located, element_to_be_clickable</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| There are no<br>statewide<br>restrictions.           | 4        |          | elements_by_t                                                                                                  | vqx4nr')                                                                      |                                                                       |                                                                                                                                    | Chains<br>visibility_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| _         |   |   | _ |
|-----------|---|---|---|
| ٦         | Γ | ] |   |
| ς         | Ì | J |   |
| 7         |   | 1 |   |
| (         |   | ) |   |
| $\hat{c}$ |   | י |   |
| Š         | Ī | - |   |
| Γ         |   | 5 |   |

| ŧ                                                    | 10                                                      | g                                                    | œ                                                    | 7                                                    | თ                                                    | ы                                                    | 4                                                       | ω                                                     | N                                                    | -                                                    |   |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---|
| Hawaii                                               | Georgia                                                 | Florida                                              | District of<br>Columbia                              | Delaware                                             | Connecticut                                          | Colorado                                             | California                                              | Arkansas                                              | Arizona                                              | Alaska                                               | 0 |
| March 25 - May 31:<br>Any person who<br>intentionall | April 3 - April 30<br>(extended to June<br>12 for th    | April 3 - April 30:<br>Extended to June 12<br>for th | April 1 - May 15:<br>Any individual or<br>entity tha | March 24 - May 31:<br>Failure to comply is<br>a crim | March 23 - May 20:<br>Penalties not<br>mentioned     | March 26 - April 26:<br>Local authorities<br>have di | March 19 until lifted;<br>Any person that<br>refuses    | No stay at home<br>order.                             | March 31 - May 15;<br>Prior to any<br>enforcement ac | March 28 - April 24:<br>A business or<br>organizatio | - |
| Hawaii has<br>reopened beaches,<br>piers, docks, sta | Georgia has<br>reopened gyms,<br>personal care<br>servi | Florida has<br>reopened retail<br>stores, restaurant | Washington, DC has<br>reopened<br>restaurants with o | Delaware has<br>reopened retail<br>stores, malls, fa | Connecticut has<br>reopened retail<br>stores, malls, | Colorado has<br>reopened retail<br>stores, restauran | Most counties have<br>reopened<br>restaurants and<br>pe | Arkansas never<br>issued a stay-at-<br>home order and | Arizona has<br>reopened retail<br>stores, restaurant | Alaska has<br>reopened retail<br>stores, dining, bar | 2 |
| Yes - required to<br>enter a business or<br>public s | No                                                      | No                                                   | Yes – Required for<br>anyone over the<br>age of 2 wh | Yes – required for<br>anyone over the<br>age of 12 w | Yes – required for<br>anyone age 2 or<br>older in pu | Yes – required for<br>anyone age 10 in<br>public ind | Yes – required for<br>anyone age 2 or<br>older in pu    | Yes – required for<br>anyone age 10 or<br>older in p  | No                                                   | No                                                   | ω |
| Travelers and residents arriving from out of s       | There are no<br>statewide<br>restrictions.              | There are no<br>statewide<br>restrictions.           | Visitors who have<br>been to a high-risk<br>states i | There are no<br>statewide<br>restrictions.           | Travelers from a state with a current daily po       | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.              | There are no<br>statewide<br>restrictions.            | There are no<br>statewide<br>restrictions.           | All non-residents<br>entering the state<br>must prov | 4 |

| τ | J      |
|---|--------|
| C | J      |
| T | 1      |
| Ļ | י<br>ק |
| 2 | י      |
| Z | 2      |
| < | ζ      |

| 22                                                   | 21                                                   | 20                                                   | 19                                                    | 18                                                   | 17                                                   | 16                                                      | 15                                                   | 14                                                   | 13                                                      | 12                                                   |   |
|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---|
| N                                                    |                                                      | 0                                                    | 9                                                     | 8                                                    | 7                                                    | 6                                                       | ί                                                    | 4                                                    | ω                                                       | N                                                    |   |
| Michigan                                             | Massachusetts                                        | Maryland                                             | Maine                                                 | Louisiana                                            | Kentucky                                             | Kansas                                                  | lowa                                                 | Indiana                                              | Illinois                                                | Idaho                                                | - |
| March 24 - May 28:<br>Lifted May 18 for the<br>Upper | March 24 - May 18:<br>Penalties not<br>mentioned.    | Until termination of<br>the state of<br>emergency an | April 2 - May 31.<br>The order will be<br>enforced b  | March 22 - May 15:<br>The governor's<br>Office of Ho | In effect for the duration of the state emerge       | March 30 - May 3:<br>Penalties not<br>mentioned.        | No stay at home<br>order.                            | March 24 - May 1:<br>May be enforced by<br>state and | March 25 - May 31:<br>May be enforced by<br>state an    | March 25 - April 30:<br>Violation of or failure<br>t |   |
| Michigan has<br>reopened retail<br>stores, restauran | Massachusetts has<br>reopened outdoor<br>recreation, | Maryland has<br>reopened retail<br>stores, malls, ou | Maine has reopened<br>retail stores,<br>restaurants,  | Louisiana has<br>opened retail stores,<br>malls, per | Kentucky has<br>reopened retail<br>stores, restauran | Kansas has<br>reopened gyms,<br>personal care<br>servic | lowa never issued a<br>stay-at-home order<br>but ins | Indiana has<br>reopened retail<br>stores, restaurant | Illinois has<br>reopened retail<br>stores, restauran    | ldaho has reopened<br>retail stores,<br>restaurant d | ~ |
| Yes – required for<br>anyone over age 4<br>in all in | Yes – required for<br>anyone over the<br>age of 2 in | Yes – required for<br>anyone over the<br>age of 5 in | Yes – required for<br>anyone over the<br>age of 2 in  | Yes – required for<br>anyone age 8 or<br>older in pu | Yes – required for<br>anyone older than<br>age of 5  | Yes – required for<br>anyone over the<br>age of 5 in    | No                                                   | Yes – required for<br>anyone age 8 or<br>older when  | Yes – required for<br>anyone over the<br>age of 2 in    | No                                                   | 5 |
| There are no<br>statewide<br>restrictions.           | Travelers from all<br>states (except CT,<br>CO, DE,  | The state strongly<br>discourages travel<br>to or fr | Travelers from all<br>states must self-<br>quarantine | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.           | Those who are<br>entering the state<br>who have trav    | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.           | The state is<br>encouraging<br>travelers from a<br>coun | The state is<br>encouraging those<br>traveling from  | 4 |

| There are no<br>statewide<br>restrictions.           | No                                                   | North Dakota never<br>issued a stay-at-<br>home order | No stay at home<br>order.                            | North Dakota     | 34 |
|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------|----|
| There are no<br>statewide<br>restrictions.           | Yes – required for<br>people over age 2<br>in public | North Carolina has<br>reopened retail<br>stores, res  | March 30 - May 22:<br>Violation is<br>punishable as  | North Carolina   | 33 |
| Travelers from a state with either more than 1       | Yes – required for<br>anyone over age 2<br>in public | New York has<br>reopened retail<br>stores, outdoor d  | March 22 - May 28:<br>Penalties not<br>mentioned.    | New York         | 32 |
| All travelers must<br>self-quarantine for<br>14 days | Yes – required in public spaces.                     | New Mexico has<br>reopened retail<br>stores, malls,   | March 24 - May 31;<br>Penalties not<br>mentioned.    | New Mexico       | 31 |
| Travelers from a<br>state with either<br>more than 1 | Yes – required for<br>anyone over age 2<br>in indoor | New Jersey has<br>reopened retail<br>stores, outdoor  | March 21 - June 9;;<br>Penalties for<br>violations o | New Jersey       | 30 |
| Travelers from all<br>states outside of<br>New Engla | Yes - required for gatherings of more than 100       | New Hampshire has<br>reopened retail<br>stores, rest  | March 27 - June 15;<br>The Division of<br>Public Hea | New<br>Hampshire | 29 |
| There are no<br>statewide<br>restrictions.           | Yes – required for<br>anyone over age 9<br>in public | Nevada has<br>reopened retail<br>stores, malls, rest  | April 2 - May 9:<br>Local governments<br>responsible | Nevada           | 28 |
| There are no<br>statewide<br>restrictions.           | No                                                   | Nebraska never<br>issued a stay-at-<br>home order and | No stay at home<br>order.                            | Nebraska         | 27 |
| There are no<br>statewide<br>restrictions.           | Yes – required for<br>anyone age 5 or<br>older in in | Montana has<br>reopened main<br>street and retail bu  | March 29 - April 26:<br>Enforceable by the<br>Attorn | Montana          | 26 |
| There are no<br>statewide<br>restrictions.           | No                                                   | Missouri citizens<br>may return to<br>economic and s  | April 6 - May 3:<br>Penalties not<br>mentioned.      | Missouri         | 25 |
| There are no<br>statewide<br>restrictions.           | Yes – required in<br>schools and at<br>public gather | Mississippi has<br>reopened retail<br>stores, restau  | March 31 - May 11:<br>May be enforced by<br>all stat | Mississippi      | 24 |
| There are no<br>statewide<br>restrictions.           | Yes – required for<br>anyone over age 5<br>in indoor | Minnesota has<br>reopened industrial<br>and manufact  | March 27 - May 17:<br>A person who<br>willfully viol | Minnesota        | 23 |
|                                                      | ы                                                    | 2                                                     | -                                                    | 0                |    |

| τ  | 7 |
|----|---|
| Ċ  | j |
| Ť  | 1 |
| C  | ) |
| ス  | J |
| C  | ) |
| \$ | 5 |
| -  | 7 |

| 45                                                   | 44                                                   | 43                                                   | 42                                                     | 41                                                    | 40                                                    | 39                                                   | 38                                                   | 37                                                   | 36                                                   | 35                                                      |   |
|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---|
| Vermont                                              | Utah                                                 | Texas                                                | Tennessee                                              | South Dakota                                          | South Carolina                                        | Rhode Island                                         | Pennsylvania                                         | Oregon                                               | Oklahoma                                             | Ohio                                                    | 0 |
| March 24 - May 15:<br>Penalties not<br>mentioned.    | March 27 - May 1:<br>Penalties not<br>mentioned.     | March 31 - April 30:<br>Failure to comply<br>with an | March 31 - April 30:<br>Penalties not<br>mentioned.    | No stay at home<br>order.                             | April 6 - May 4: All<br>law enforcement<br>officers   | March 28 - May 8:<br>Penalties not<br>mentioned.     | March 23 - June 4:<br>Penalties not<br>mentioned.    | March 23 until<br>further notice: Any<br>person foun | March 24 - May 6:<br>Penalties not<br>mentioned.     | March 23 - May 29:<br>Enforced by state<br>and local    | - |
| Vermont has<br>reopened retail<br>stores, restaurant | Utah has reopened<br>restaurants,<br>personal servic | Texas has reopened<br>retail stores,<br>restaurants, | Tennessee has<br>reopened<br>restaurants and<br>retail | The governor never<br>issued a stay-at-<br>home order | South Carolina has<br>reopened retail<br>stores, res  | Rhode Island has<br>reopened retail<br>stores, resta | Pennsylvania has<br>reopened retail<br>stores, house | Oregon has<br>reopened retail<br>stores, restaurant  | Oklahoma reopened<br>retail stores,<br>restaurant di | Ohio has reopened<br>retail stores,<br>restaurant di    | 2 |
| Yes – required for<br>anyone age 2 or<br>older when  | No                                                   | Yes – required in all counties with more than        | No                                                     | No                                                    | No                                                    | Yes – required in all<br>public spaces.              | Yes – required for<br>anyone age 2 or<br>older in pu | Yes – required in<br>public spaces for<br>people age | No                                                   | Yes – required for<br>people age 10 and<br>older whe    | ω |
| Travelers driving<br>must either<br>quarantine for 1 | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.             | There are no<br>statewide<br>restrictions.            | The state is<br>encouraging out-of-<br>state traveler | Travelers from<br>states with a<br>positivity rate o | Travelers from a<br>state deemed at<br>risk are reco | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.           | The state<br>encourages<br>travelers from<br>states rep | 4 |

| In                                                                                                                                                                                                                                   |        | In                  |                                      | In                                                                                        | In                                                         |                                                      |                                                         |                                                      |                                                      |                                                      |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---|
| [42]:                                                                                                                                                                                                                                |        | [46]:               |                                      | [44]:                                                                                     | In [29]:                                                   |                                                      |                                                         |                                                      |                                                      |                                                      |   |
| leve<br>1/d/:<br>rHxjv                                                                                                                                                                                                               | Part 2 | ds.to               | t,]sp                                | def (                                                                                     | ds.c                                                       | 50                                                   | 49                                                      | 48                                                   | 47                                                   | 46                                                   |   |
| <pre>lever_variables = 1/d/1rHxjvo7rZHRo( rHxjvo7rZHRo08x3Rl</pre>                                                                                                                                                                   | 42     | ds.to_csv('ds.csv') | ds['time_range']                     | <pre>clean_func(x):<br/>if "-" in x:<br/>return(x.s</pre>                                 | ds.columns = ['                                            | Wyoming                                              | Wisconsin                                               | West Virginia                                        | Washington                                           | Virginia                                             | 0 |
| s = pd.read_csv<br>HRo08x3RUTl4g8e<br>(3RUTl4g8eSf0yu                                                                                                                                                                                |        | ( ' VS)             | П                                    | (x.split(';')[©<br>(x):                                                                   | <pre>state','time',</pre>                                  | No stay at home<br>order.                            | March 25 – May 13:<br>Order may be<br>enforced by an    | March 24 - May 4:<br>The order may be<br>enforced by | March 25 - May 31:<br>Criminal penalties<br>pursuant | March 24 - June 10:<br>Class 1<br>misdemeanor: jail  | - |
| <pre>lever_variables = pd.read_csv('https://docs.google.com/spreadsheets/u/<br/>1/d/1rHxjvo7rZHRo08x3RUTl4g8eSf0yumngTUIIsyhHUqw/export?format=csv&amp;id=1<br/>rHxjvo7rZHRo08x3RUTl4g8eSf0yumngTUIIsyhHUqw&amp;gid=98237079')</pre> |        |                     | <pre>ds.time.apply(clean_func)</pre> | n_func(x):<br>-" in x:<br>return(x.split(';')[0].split(':')[0].split('.')[0].split('(')[0 | ['state','time','reopen','requirement','add.restrictions'] | Wyoming never<br>issued a stay-at-<br>home order and | The governor's stay-<br>at-home order was<br>to be in   | West Virginia has<br>reopened retail<br>stores, mall | Washington has<br>reopened retail<br>stores, restaur | Virginia has<br>reopened retail<br>stores, restauran | 2 |
| google.com/spr<br>HUqw/export?fo<br>gid=98237079')                                                                                                                                                                                   |        |                     |                                      | .split('.')[0]                                                                            | .rement','add.r                                            | No                                                   | Yes – required for<br>anyone age 5 or<br>older in pu    | Yes – required for<br>anyone age 9 or<br>older in al | Yes – required for<br>anyone age 5 or<br>older in an | Yes – required in<br>public places for<br>anyone ove | ы |
| readsheets∕u∕<br>∩rmat=csv&id=1                                                                                                                                                                                                      |        |                     |                                      | .split('(')[0                                                                             | <pre>'estrictions']</pre>                                  | There are no<br>statewide<br>restrictions.           | The state<br>encourages<br>travelers to check<br>themse | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.           | There are no<br>statewide<br>restrictions.           | 4 |

lever\_variables['lockdown\_len'] = lever\_variables['lockdown\_len'].apply
(lambda x: str(x).split(" ")[0])
lever\_variables['added\_levels'] = lever\_variables.penalties + lever\_var states = lever\_variables.copy() iables.masks\_required

In [141]: states['share\_65'] = states['Total number, adults age 65 and older']/st
ates['Population 2019'] density = (states.iloc[:,10].astype(float)/states.iloc[:,9].astype(floa
t)).reset\_index()[[0]] density.columns = ['density']

axis = 1) states = pd.concat([states,pd.get\_dummies(states.iloc[:,13]), density],

- In [143]: pruned\_states = states[['State','Abbreviation','Population 2019','lockd own\_len', 'density', 'Democrat', 'Republican', 'added\_levels', 'share\_65']]
- In [144]: pruned\_states

Out[144]:

| 1                  |           |          |           |           |            |           |             |            |                         |
|--------------------|-----------|----------|-----------|-----------|------------|-----------|-------------|------------|-------------------------|
|                    | 0         | -        | N         | ω         | 4          | сл        | 6           | 7          | œ                       |
| State              | Alabama   | Alaska   | Arizona   | Arkansas  | California | Colorado  | Connecticut | Delaware   | District of<br>Columbia |
| Abbreviation       | AL        | AK       | AZ        | AR        | CA         | СО        | СТ          | DE         | DC                      |
| Population<br>2019 | 4903185   | 731545   | 7278717   | 3017804   | 39512223   | 5758736   | 3565287     | 973764     | 705749                  |
| lockdown_len       | 26        | 27       | 45        | nan       | nan        | 31        | 58          | 68         | 44                      |
| density            | 93.531179 | 1.114438 | 63.845034 | 56.744838 | 241.359398 | 55.319270 | 643.089286  | 498.343910 | 10.732519               |
| density            | 93.531179 | 1.114438 | 63.845034 | 56.744838 | 241.359398 | 55.319270 | 643.089286  | 498.343910 | 10.732519               |
| density Democrat   | 0         | 0        | 0         | 0         | -          | -         | _           | -          | <u> </u>                |

Create PDF in your applications with the Pdfcrowd HTML to PDF API

|            | 31         | 30         | 29               | 28         | 27        | 26        | 25        | 24          | 23         | 22         | 21 M          | 20         | 19         | 18         | 17        | 16        | 15        | 14         | 13         | 12        | 1         | 10         | 9          |                    |
|------------|------------|------------|------------------|------------|-----------|-----------|-----------|-------------|------------|------------|---------------|------------|------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|--------------------|
| Now York   | New Mexico | New Jersey | New<br>Hampshire | Nevada     | Nebraska  | Montana   | Missouri  | Mississippi | Minnesota  | Michigan   | Massachusetts | Maryland   | Maine      | Louisiana  | Kentucky  | Kansas    | Iowa      | Indiana    | Illinois   | Idaho     | Hawaii    | Georgia    | Florida    | State              |
| NK         | NM         | Ŋ          | NH               | NV         | NE        | MT        | MO        | MS          | MN         | MI         | MA            | MD         | ME         | Ā          | KY        | KS        | AI        | Z          | F          | D         | Ŧ         | GA         | 臣          | Abbreviation       |
| 10153561   | 2096829    | 8882190    | 1359711          | 3080156    | 1934408   | 1068778   | 6137428   | 2976149     | 5639632    | 9986857    | 6892503       | 6045680    | 1344212    | 4648794    | 4467673   | 2913314   | 3155070   | 6732219    | 12671821   | 1787065   | 1415872   | 10617423   | 21477737   | Population<br>2019 |
| 67         | 68         | 80         | 80               | 37         | nan       | 28        | 27        | 41          | 51         | 65         | 55            | nan        | 59         | 54         | nan       | 34        | nan       | 38         | 67         | 36        | 67        | 27         | 27         | lockdown_len       |
| 730011 130 | 38.491583  | 73.048531  | 155.894405       | 329.393220 | 17.495347 | 13.815998 | 41.738150 | 42.693899   | 116.439526 | 114.866717 | 71.196188     | 572.778778 | 108.343032 | 131.370108 | 86.176977 | 72.092104 | 38.344595 | 119.628598 | 347.935777 | 30.855088 | 16.941537 | 971.224204 | 361.328662 | density            |
| 730011 130 | 38.491583  | 73.048531  | 155.894405       | 329.393220 | 17.495347 | 13.815998 | 41.738150 | 42.693899   | 116.439526 | 114.866717 | 71.196188     | 572.778778 | 108.343032 | 131.370108 | 86.176977 | 72.092104 | 38.344595 | 119.628598 | 347.935777 | 30.855088 | 16.941537 | 971.224204 | 361.328662 | density            |
| 7          | <b>_</b>   | -          | -                | -          | 0         | 0         | 0         | 0           | -          | 0          | -             | -          | -          | 0          | 0         | 0         | 0         | 0          |            | 0         | -         | 0          | 0          | Democrat           |

Create PDF in your applications with the Pdfcrowd HTML to PDF API

|           |     | State                     | State Abbreviation | Population<br>2019 | lockdown_len | density     | density     | density Democrat |
|-----------|-----|---------------------------|--------------------|--------------------|--------------|-------------|-------------|------------------|
|           | 33  | North Carolina            | NC                 | 10488084           | 53           | 148.337916  | 148.337916  | 0                |
|           | 34  | North Dakota              | ND                 | 762062             | nan          | 16.999688   | 16.999688   | 0                |
|           | 35  | Ohio                      | ОН                 | 11689100           | 67           | 167.218860  | 167.218860  | 0                |
|           | 36  | Oklahoma                  | ŎĶ                 | 3956971            | 43           | 40.218842   | 40.218842   | 0                |
|           | 37  | Oregon                    | OR                 | 4217737            | nan          | 91.574471   | 91.574471   | -                |
|           | 38  | Pennsylvania              | PA                 | 12801989           | 73           | 8286.077023 | 8286.077023 | 0                |
|           | 39  | Rhode Island              | R                  | 1059361            | 41           | 33.097791   | 33.097791   | -                |
|           | 40  | South Carolina            | SC                 | 5148714            | 28           | 66.761505   | 66.761505   | 0                |
|           | 41  | South Dakota              | SD                 | 884659             | nan          | 20.990343   | 20.990343   | 0                |
|           | 42  | Tennessee                 | TN                 | 6829174            | 30           | 25.424976   | 25.424976   | 0                |
|           | 43  | Texas                     | XT                 | 28995881           | 30           | 341.513721  | 341.513721  | 0                |
|           | 4   | Utah                      | UT                 | 3205958            | 35           | 333.432969  | 333.432969  | 0                |
|           | 45  | Vermont                   | VT                 | 623989             | 52           | 14.589750   | 14.589750   | -                |
|           | 46  | Virginia                  | VA                 | 8535519            | 78           | 119.707712  | 119.707712  | -                |
|           | 47  | Washington                | WA                 | 7614893            | 67           | 314.262432  | 314.262432  | -                |
|           | 48  | West Virginia             | W                  | 1792147            | 41           | 27.359770   | 27.359770   | 0                |
|           | 49  | Wisconsin                 | W                  | 5822434            | nan          | 59.523135   | 59.523135   | 0                |
|           | 50  | Wyoming                   | WY                 | 578759             | nan          | 8511.161765 | 8511.161765 | 0                |
|           | 51  | Puerto Rico               | NaN                | 3193694            | nan          | 908.590043  | 908.590043  | 0                |
|           |     | l                         | l                  | l                  | l            |             |             | •                |
| In [145]: | imp | In [145]: import datetime | U                  |                    |              |             |             |                  |

| Out[234]: Index(['date', 'state', 'dataQu<br>'deathIncrease', 'deathF<br>'hospitalizedCumulative<br>'hospitalizedIncrease', 'neg<br>'negativeIncrease', 'neg<br>'negativeTestsPeopleAnt:<br>'onVentilatorCumulativeCas<br>core', 'positiveTestsAntibody',<br>'positiveTestsPeopleAnt:                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>date', 'state', 'dataQualityGrade', 'death', 'deathConfirmed',<br/>deathIncrease', 'deathProbable', 'hospitalized',<br/>hospitalizedCumulative', 'hospitalizedCurrently',<br/>hospitalizedIncrease', 'inIcuCumulative', 'inIcuCurrently', 'ne<br/>negativeIncrease', 'negativeTestsAntibody',<br/>negativeTestsPeopleAntibody', 'negativeTestsViral',<br/>onVentilatorCumulative', 'onVentilatorCurrently', 'pending',<br/>positiveTestsAntibody', 'positiveTestsAntigen',<br/>positiveTestsAntibody', 'positiveTestsAntigen',</pre> |

In [233]:

-history.csv')

covid = pd.read\_csv('https://covidtracking.com/data/download/all-states

bounds = bounds.dropna(axis = 0)

) + years\_added)

bounds.lockdown\_end = bounds.lockdown\_end.apply(lambda x: convert(x) +

return(datetime.datetime.strptime('1899-01-01','%Y-%m-%d'))

return(datetime.datetime.strptime(str(x),'%Y-%m-%d'))

years\_added = datetime.timedelta(days = 365 \* 120)

try:

except:

years\_added)

bounds.lockdown\_start = bounds.lockdown\_start.apply(lambda x: convert(x

Create PDF in your applications with the Pdfcrowd HTML to PDF API

dtype='object')

'totalTestsViral', 'totalTestsViralIncrease'],

Create PDF in your applications with the Pdfcrowd HTML to PDF API

'positive\_diminishing\_rate']].fillna(fil\_cov.hospitalized\_dimi
nishing\_rate.mean(skipna = True))

fil\_cov['hospitalized\_diminishing\_rate'] = fil\_cov['hospitalizedIncreas
 e\_y']/fil\_cov['hospitalizedIncrease\_x']
 fil\_cov['positive\_diminishing\_rate'] = fil\_cov['positiveIncrease\_y']/fi

l\_cov['positiveIncrease\_x']

fil\_cov['death\_diminishing\_rate'] = fil\_cov['deathIncrease\_y']/fil\_cov[
'deathIncrease\_x']

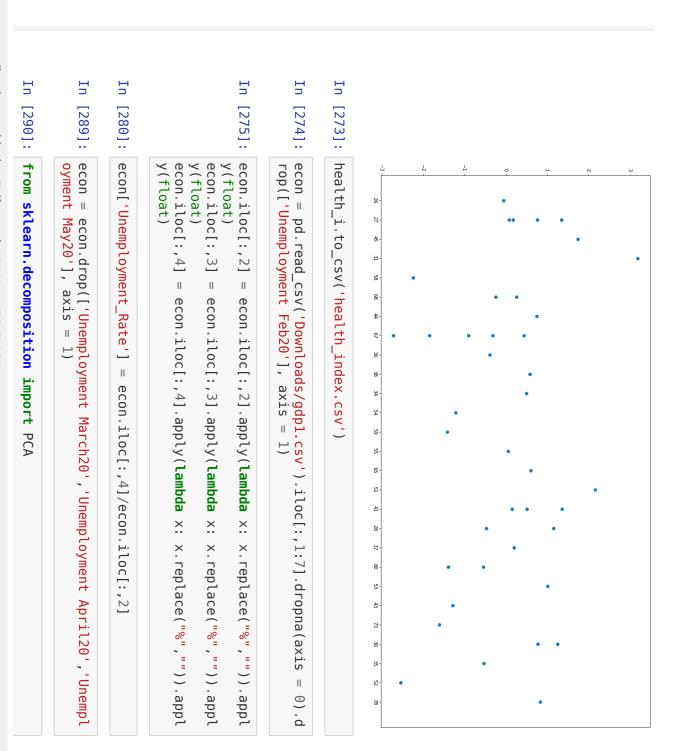
In [251]:

index()

fil\_cov = pd.merge(filtered\_covid\_peak,filtered\_covid\_end, on =

'state'

'hospitalizedIncrease':'last',
'positiveIncrease':'last'}).reset\_


| Out[296]:                                                                                                                                                                                                                                                                                                                                                                                                          | In [296]:               | Out[269]:                                                                                                                           | In [269]:                                  | Out[268]:                                   | In [268]:                                                | In [267]:                                                                                                                         |                                                                           | In [266]:                                                                                                                                                           | In [256]:                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| array([[-0.08679487, 1.3729835, 0.19620723],<br>[0.96462078, -0.4564843, -0.6299453],<br>[-0.01447528, 2.21565164, 0.99622318],<br>[1.43191663, 2.60034796, 1.62884168],<br>[1.43191663, 0. , -0.16038737],<br>[0.35988498, 0. , -0.16038737],<br>[1.12817433, 1.55495867, -0.16038737],<br>[-0.48165987, 0.41774961, 0.2410829],<br>[1.43191663, -0.63989423, -1.44723529],<br>[0.4618496, 0. , 0. , 0.24863326], | filtered_covid_agg_data | array([[ 0.59069292, 0.5009272, 0.63257713],<br>[-0.51333867, 0.83814829, -0.18436607],<br>[ 0.62254742, 0.21582257, -0.75223356]]) | <pre>principalComponents.components_</pre> | array([0.52673492, 0.27307939, 0.20018569]) | <pre>principalComponents.explained_variance_ratio_</pre> | <pre>from sklearn.decomposition import PCA pca = PCA(n_components=3) principalComponents = pca.fit(filtered_covid_agg_data)</pre> | <pre>'hospitalized_diminishing_rate', 'positive_diminishing_rate'])</pre> | <pre>from sklearn.preprocessing import StandardScaler filtered_covid_agg_data = StandardScaler().fit_transform(filtered_covid _agg[['death_diminishing_rate',</pre> | <pre>filtered_covid_agg = fil_cov</pre> |

| In [303]:<br>Out[303]:                                                                   | In [270]:                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>filtered_covid_agg[['state','health_index']] state health_index 0 AK 0.760612</pre> | <pre>filtered_covid_agg['health_index'] = [i[0] for i in principalComponents .transform(filtered_covid_agg_data)]</pre> | 1       1.08473552, -1.08174544, 0.78910924],         -0.560486123, 0.28920422, 0.34701358],         -0.03858181, -0.28920422, 0.34701358],         -1.06550638, -0.78116639, -0.12215598],         -1.43191663, 0.28920422, 0.34701358],         -0.72483344, 0.,         1.43191663, 0.295515729, 1.3198421],         0.47723042, 0.,         0.47723042, 0.,         0.47723042, 0.,         0.47723042, 0.,         1.43191663, 0.29055182, 1.3198421],         1.43191663, 0.29055182, 1.4206866],         -1.466520617, 0.,         0.50381516, 0.,         0.49732494, 0.,         1.17879805, -1.08174544, 0.142306016],         1.178798057, -1.08174544, 0.149300123],         1.05598357, -1.08174544, 0.47990741],         1.05598957, -1.08174544, 0.7990741],         1.08174544, 0.7990741],         1.04318171434, -0.63340702, 1.12447823],         1.04318729, 0.37665234, 1.12447823],         1.04318729, 0.37665234, 1.12447823],         1.04318729, 0.37665234, 1.12447823],         1.04318729, 0.37665234, 1.12447823],         1.043187239, 0.67827835, 0.62827159],         1.043187239, 0.67827835, 1.62884168],         1.108174544, -0.2323062],         1.108174544, -0.2323042],         1.108174544, -0.252827441]) |

|          |           |           |          |           |          |          |          |          |           |          |           |          |          |          |           |           |          |          |           |          |           |          |          |           | i            |
|----------|-----------|-----------|----------|-----------|----------|----------|----------|----------|-----------|----------|-----------|----------|----------|----------|-----------|-----------|----------|----------|-----------|----------|-----------|----------|----------|-----------|--------------|
| 25       | 24        | 23        | 22       | 21        | 20       | 19       | 18       | 17       | 16        | 15       | 14        | သံ       | 12       | 7        | 10        | 9         | œ        | 7        | 6         | сл       | 4         | ω        | N        | <u> </u>  |              |
| NM       | Ŋ         | NH        | NC       | MT        | MS       | MO       | MN       | M        | ME        | MA       | LA        | KS       | z        | F        | ▣         | Ξ         | GA       | 끈        | DE        | DC       | CT        | 8        | AZ       | AL        | state        |
| 0.257904 | -1.391537 | -0.543534 | 1.010419 | -0.479503 | 1.356185 | 0.167644 | 2.159189 | 0.602214 | -1.416942 | 0.051853 | -1.217375 | 0.490324 | 0.574769 | 0.430091 | -0.390205 | -2.719457 | 0.077253 | 1.337812 | -0.246804 | 0.744366 | -2.243082 | 3.178776 | 1.731518 | -0.057360 | health_index |

| 0ut[279]:                                                                                                                                                                                                    | In [279]:                                                | In [271]:                                                                                                               |          |           |           |          |           |          |          |          |          |           |           |           |           |          |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|----------|-----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|----------|--------------|
| <mat< th=""><th>plt.</th><th></th><th>39</th><th>38</th><th>37</th><th>36</th><th>35</th><th>34</th><th>33</th><th>32</th><th>31</th><th>30</th><th>29</th><th>28</th><th>27</th><th>26</th><th></th></mat<> | plt.                                                     |                                                                                                                         | 39       | 38        | 37        | 36       | 35        | 34       | 33       | 32       | 31       | 30        | 29        | 28        | 27        | 26       |              |
| plotl                                                                                                                                                                                                        | scatt                                                    | health_i<br>ndex']],                                                                                                    | Ŵ        | WA        | ۲         | VA       | Ţ         | ТX       | ΤN       | SC       | ₽        | PA        | 0K        | ОН        | NY        | ۸N       | state        |
| .ib.collect:                                                                                                                                                                                                 | :er(health_                                              | = pd.merge<br>left_on =                                                                                                 | 0.144014 | -0.901805 | -2.548564 | 0.823256 | -0.531837 | 0.764707 | 1.250112 | 1.147756 | 0.500133 | -1.610360 | -1.289397 | -0.316762 | -1.855705 | 0.199321 | health_index |
| <matplotlib.collections.pathcollection 0x1312789e8="" at=""></matplotlib.collections.pathcollection>                                                                                                         | plt.scatter(health_i.lockdown_len,health_i.health_index) | <pre>= pd.merge(pruned_states,filtered_covid_agg[['state','health_i left_on = 'Abbreviation', right_on = 'state')</pre> |          |           |           |          |           |          |          |          |          |           |           |           |           |          |              |





|   | τ | J |
|---|---|---|
| ז |   | J |
|   | Ī | 1 |
| ( |   | ) |
| 7 | τ | J |
| ( |   | ) |
| 5 | Ś | 5 |
| ī |   | j |
|   |   |   |

|          |           |           |                      |          |             |           |            |                    |           |           |           | Out[300]:                                      | In [300]: | In [293]:                                                                                     |
|----------|-----------|-----------|----------------------|----------|-------------|-----------|------------|--------------------|-----------|-----------|-----------|------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|
| 1        | 10        | 9         | 8                    | 7        | ი           | G         | 4          | ω                  | N         | <u> </u>  | 0         |                                                | econ      | econ<br>oc[:                                                                                  |
| Hawaii   | Georgia   | Florida   | District of Columbia | Delaware | Connecticut | Colorado  | California | Arkansas           | Arizona   | Alaska    | Alabama   | State                                          |           | <pre>econ['indexes'] = oc[:,1:])]</pre>                                                       |
| -8.1     | -4.7      | -4.9      | -4.0                 | -5.6     | -4.6        | -4.1      | -4.7       | -5.0               | -3.6      | -4.0      | -4.8      | State GDP change 1st quarter Unemployment_Rate |           | <pre>econ['indexes'] = [i[0] for i in principalComponents2.transform(econ.il oc[:,1:])]</pre> |
| 9.791667 | 2.043478  | 3.113636  | 1.466667             | 3.180000 | 2.823529    | 1.961538  | 2.981818   | 1.920000           | 1.475410  | 2.442308  | 3.200000  | Unemployment_Rate                              |           | rincipalComponen                                                                              |
| 6.918635 | -0.929999 | -0.038689 | -1.833745            | 0.508111 | -0.456010   | -1.416206 | -0.273837  | 1.920000 -0.801890 | -2.113570 | -1.151499 | -0.049782 | indexes                                        |           | ts2.transform                                                                                 |
|          |           |           |                      |          |             |           |            |                    |           |           |           |                                                |           | (econ.il                                                                                      |

Out[292]: array([[-0.71484831, [ 0.69927956,

0.69927956], 0.71484831]])

In [292]: principalComponents2.components\_

In [291]: principalComponents2.explained\_variance\_ratio\_

pca = PCA(n\_components=2)
principalComponents2 = pca.fit(econ.iloc[:,1:])

Out[291]: array([0.71729648, 0.28270352])

| 0.178894  | 4.344828          | -4.0                   | Oklahoma       | 36       |
|-----------|-------------------|------------------------|----------------|----------|
| -0.111223 | 2.396552          | -5.5                   | Ohio           | 35       |
| -0.678421 | 4.550000          | -2.6                   | North Dakota   | 34       |
| 0.008555  | 2.976744          | -5.1                   | North Carolina | 33       |
| 2.616070  | 3.536585          | -8.2                   | New York       | 32       |
| -2.492648 | 1.444444          | -3.1                   | New Mexico     | <u>3</u> |
| 1.123432  | 4.162162          | -5.5                   | New Jersey     | 30       |
| 2.842931  | 6.416667          | -5.7                   | New Hampshire  | 29       |
| 2.707033  | 3.666667          | -8.2                   | Nevada         | 28       |
| -3.862900 | 1.325000          | -1.3                   | Nebraska       | 27       |
| -0.110368 | 2.500000          | -5.4                   | Montana        | 26       |
| -0.548006 | 2.589744          | -4.7                   | Missouri       | 25       |
| -0.561844 | 2.058824          | -5.2                   | Mississippi    | 24       |
| -0.472159 | 3.413793          | -4.0                   | Minnesota      | 23       |
| 2.606093  | 4.953488          | -6.8                   | Michigan       | 22       |
| 2.072707  | 5.928571          | -5.1                   | Massachusetts  | 21       |
| -0.025478 | 3.030303          | -5.0                   | Maryland       | 20       |
| 0.975872  | 3.133333          | -6.3                   | Maine          | 19       |
| 0.481306  | 2.119403          | -6.6                   | Louisiana      | 18       |
| -0.106830 | 2.096154          | -5.8                   | Kentucky       | 17       |
| -1.005291 | 3.571429          | -3.1                   | Kansas         | 16       |
| -1.055370 | 3.090909          | -3.5                   | lowa           | 15       |
| 1.151449  | 4.100000          | -5.6                   | Indiana        | 1<br>4   |
| 0.688808  | 3.642857          | -5.4                   | Illinois       | 13       |
| -0.270464 | 3.600000          | -4.1                   | Idaho          | 12       |
| indexes   | Unemployment_Rate | GDP change 1st quarter | State          |          |

Create PDF in your applications with the Pdfcrowd HTML to PDF API

| -0.456010 | 6 Connecticut | ~   |
|-----------|---------------|-----|
| -1.416206 | 5 Colorado    | (7) |
| -0.273837 | 4 California  | •   |
| -0.801890 | 3 Arkansas    | ()  |
| -2.113570 | 2 Arizona     | N   |
| -1.151499 | 1 Alaska      | -   |
| -0.049782 | 0 Alabama     | ~   |
| indexes   | State         |     |

|    | State          | GDP change 1st quarter Unemployment_Rate | Unemployment_Rate | indexes   |
|----|----------------|------------------------------------------|-------------------|-----------|
| 37 | Oregon         | -4.4                                     | 4.085714          | 0.283641  |
| 38 | Pennsylvania   | -5.6                                     | 2.310345          | -0.100021 |
| 39 | Rhode Island   | -6.2                                     | 3.489362          | 1.153351  |
| 40 | South Carolina | -4.8                                     | 3.875000          | 0.422232  |
| 41 | South Dakota   | -2.2                                     | 3.032258          | -2.025686 |
| 42 | Tennessee      | -6.2                                     | 3.333333          | 1.044243  |
| 43 | Texas          | -2.5                                     | 2.549020          | -2.149150 |
| 4  | Utah           | -3.1                                     | 2.263158          | -1.920138 |
| 45 | Vermont        | -6.1                                     | 4.129032          | 1.529174  |
| 46 | Virginia       | -3.8                                     | 2.727273          | -1.095199 |
| 47 | Washington     | -5.0                                     | 2.960784          | -0.074091 |
| 48 | West Virginia  | -5.0                                     | 2.150000          | -0.641056 |
| 49 | Wisconsin      | -5.0                                     | 3.903226          | 0.584939  |
| 50 | Wyoming        | -3.6                                     | 2.315789          | -1.525910 |
|    |                |                                          |                   |           |

# Out[301]: In [301]: econ.iloc[:,[0,3]]

| <u>3</u>   | 30         | 29            | 28       | 27        | 26        | 25        | 24          | 23        | 22       | 21            | 20        | 19       | 18        | 17        | 16        | 15        | 14       | 13       | 12        | Ż        | 10        | 9         | œ                    | 7        |         |
|------------|------------|---------------|----------|-----------|-----------|-----------|-------------|-----------|----------|---------------|-----------|----------|-----------|-----------|-----------|-----------|----------|----------|-----------|----------|-----------|-----------|----------------------|----------|---------|
| New Mexico | New Jersey | New Hampshire | Nevada   | Nebraska  | Montana   | Missouri  | Mississippi | Minnesota | Michigan | Massachusetts | Maryland  | Maine    | Louisiana | Kentucky  | Kansas    | lowa      | Indiana  | Illinois | Idaho     | Hawaii   | Georgia   | Florida   | District of Columbia | Delaware | State   |
| -2.492648  | 1.123432   | 2.842931      | 2.707033 | -3.862900 | -0.110368 | -0.548006 | -0.561844   | -0.472159 | 2.606093 | 2.072707      | -0.025478 | 0.975872 | 0.481306  | -0.106830 | -1.005291 | -1.055370 | 1.151449 | 0.688808 | -0.270464 | 6.918635 | -0.929999 | -0.038689 | -1.833745            | 0.508111 | indexes |

| In [ ] | In [ ]              | In [294]:                          |           |           |               |            |           |          |           |           |           |              |                |              |              |          |          |           |              |                |          |         |
|--------|---------------------|------------------------------------|-----------|-----------|---------------|------------|-----------|----------|-----------|-----------|-----------|--------------|----------------|--------------|--------------|----------|----------|-----------|--------------|----------------|----------|---------|
|        | ]: covic            |                                    | 50        | 49        | 48            | 47         | 46        | 45       | 44        | 43        | 42        | 41           | 40             | 39           | 38           | 37       | 36       | 35        | 34           | 33             | 32       |         |
|        | covid.dropna(subset | <pre>econ.to_csv('econ.csv')</pre> | Wyoming   | Wisconsin | West Virginia | Washington | Virginia  | Vermont  | Utah      | Texas     | Tennessee | South Dakota | South Carolina | Rhode Island | Pennsylvania | Oregon   | Oklahoma | Ohio      | North Dakota | North Carolina | New York | State   |
|        | П                   | 1.CSV')                            | -1.525910 | 0.584939  | -0.641056     | -0.074091  | -1.095199 | 1.529174 | -1.920138 | -2.149150 | 1.044243  | -2.025686    | 0.422232       | 1.153351     | -0.100021    | 0.283641 | 0.178894 | -0.111223 | -0.678421    | 0.008555       | 2.616070 | indexes |
|        | ['state'])[]        |                                    |           |           |               |            |           |          |           |           |           |              |                |              |              |          |          |           |              |                |          |         |

lockdown\_data["lockdown\_start"] = lockdown\_data["time\_range"][lockdown\_ data['time\_range'].notnull()].apply(lambda x:x[0]) lockdown\_data["lockdown\_end"] = lockdown\_data["time\_range"][lockdown\_da lockdown\_data["lockdown\_end"][10] = "April 30" lockdown\_data["lockdown\_start"] = lockdown\_data["lockdown\_start"][lockd own\_data['lockdown\_start'].notnull()].apply(lambda x:datetime.strptime) ta['time\_range'].notnull()].apply(lambda x:x[1])

In [10]:

h

[8]:

lockdown\_data["time\_range"] = lockdown\_data["time\_range"][lockdown\_data

['time\_range'].notnull()].apply(lambda x: x.split(" - "))

H

[9]:

In

[7]:

lockdown\_data = pd.read\_csv("~/Downloads/ds.csv")

from sklearn.inspection import plot\_partial\_dependence

from sklearn.manifold import TSNE from sklearn.cluster import KMeans

from sklearn.metrics import mean\_squared\_error

from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor import sklearn.model\_selection as ms

import matplotlib.cm as cm import matplotlib.pyplot as plt h

[6]:

import numpy as np

import pandas as pd

from datetime import datetime

data['lockdown\_end'].notnull()].apply(lambda x:datetime.strptime(x, '%B lockdown\_data["lockdown\_end"] = lockdown\_data["lockdown\_end"][lockdown X, '%B %d')) %d'))

/usr/local/lib/python3.7/site-packages/ipykernel\_launcher.py:1: Setting

Create PDF in your applications with the Pdfcrowd HTML to PDF API

WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy See the caveats in the documentation: https://pandas.pydata.org/pandas """Entry point for launching an IPython kernel.

- In [11]: lockdown\_data["lockdown\_len"] = lockdown\_data["lockdown\_end"] - lockdow n\_data["lockdown\_start"]
- In [12]: lockdown\_data["penalties"] = lockdown\_data["time"].apply(lambda x : not ("Penalties not mentioned." in x))
- In [13]: lockdown\_data["masks\_required"] = lockdown\_data["requirement"].apply(la mbda x : "Yes" in x)
- In [14]: lockdown\_data["additional"] = lockdown\_data["add.restrictions"].apply(l
  ambda x : not("There are no statewide restrictions." in x))
- In [15]: state\_data = pd.read\_csv("~/Desktop/State Data i Sheet1.csv")
- In [16]: new\_header = state\_data.iloc[0]
  state\_data = state\_data[1:]
  state\_data.columns = new\_header
- In [17]: lockdown\_data\_new = lockdown\_data.iloc[:, [1, 7, 8, 9, 10, 11, 12]]
- In [18]: lockdown\_data\_new = lockdown\_data\_new.rename(columns = {"state":"State" state\_data = state\_data.rename(columns = {'State ':"State"})
- In [19]: merged\_data = pd.merge(lockdown\_data\_new, state\_data, on='State', how=
  'outer')

Create PDF in your applications with the Pdfcrowd HTML to PDF API

```
In [ ]:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                #skeleton code
                                                                                                                                                                                                                             for f in range(X.shape[1]):
    print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indic
    es[f]]))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 0)
                                                                                                                                                                                                                                                                                                                                                          print("Feature ranking:")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ors_],
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     std = np.std([tree.feature_importances_ for tree in rfregressor.estimat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       #feature importance
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   e', 'BuildingArea'], # labels on graphs
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               my_plots = plot_partial_dependence(rfregressor,
plt.xticks(range(X.shape[1]), indices)
                                                                plt.bar(range(X.shape[1]), importances[indices],
                                                                                              plt.title("Feature importances")
                                                                                                                               plt.figure()
                                                                                                                                                          # Plot the impurity-based feature importances of the forest
                                                                                                                                                                                                                                                                                                                                                                                            # Print the feature ranking
                                                                                                                                                                                                                                                                                                                                                                                                                                                      indices = np.argsort(importances)[::-1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                importances = rfregressor.feature_importances_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               #partial dependency
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            rfregressor.fit(X_train, y_train)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           rfregressor = RandomForestRegressor(max_depth=100, random_state=0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     plots we want to show
                               color="r", yerr=std[indices], align="center")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          axis=0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   X=X ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    grid_resolution=10)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   feature_names=['Distance',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  features=[0, 2], # column numbers of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     raw predictors dat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       'Landsiz
```

In [20]: merged\_data.to\_csv(r'~/Desktop/state\_lockdown\_data.csv')

Create PDF in your applications with the Pdfcrowd HTML to PDF API

plt.xlim([-1, X.shape[1]])
plt.show()

| In [964]:                                                                                                          |                                                                                                                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                          |                                         | In [963]:                                   |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|
| <pre>health_index = pd.read_csv("~/Desktop/health_index.csv") econ_index = pd.read_csv("~/Desktop/econ.csv")</pre> | <pre>import plotly import plotly import pandas as pd import numpy as np import seaborn as sns import plotly.express as px import matplotlib %matplotlib inline</pre> | <pre>import eli5 from eli5.sklearn import PermutationImportance</pre> | <pre>import sklearn.model_selection as ms from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import GradientBoostingRegressor from sklearn.cluster import KMeans from sklearn.inspection import TSNE from sklearn.inspection import plot_partial_dependence from sklearn.metrics import r2_score from sklearn.inspection import partial_dependence</pre> | <pre>import matplotlib.pyplot as plt import matplotlib.cm as cm</pre> | <pre>from datetime import datetime</pre> | <pre>import statsmodels.api as sm</pre> | : import numpy as np<br>import pandas as pd |

In [888]: In [966]: In [965]: health\_index = health\_index.rename(columns = {'lockdown\_len':"Lockdown LR = sm.OLS(y, X).fit()for i in range(len(y)): te=5 health\_index = health\_index.rename(columns = {'density':"Density"})
health\_index = health\_index.rename(columns = {'share\_65':"Share\_65"})
X = health\_index.iloc[:, [3, 4, 5, 7, 9, 11, 12]]
X = X.drop(X.index[12]) ast) AttributeError  $\leq$ y = health\_index.iloc[:, [14]] els"}) AttributeError: 'numpy.ndarray' object has no attribute 'drop' <ipython-input-966-4227c171821b> in <module>  $\leq$ dex"}) 1, health\_index = health\_index.rename(columns = {'added\_levels':"Added Lev health\_index = health\_index.rename(columns = {'health\_index':"Health In ---> 3 Length"}) II = y.drop(y.index[12]) 12]].values.reshape(1, -1))-health\_index.iloc[i, [14]].values) y.values.ravel() print(i, rfregressor.predict(health\_index.iloc[i, [3, 4, 5, 7, rfregressor.fit(temp\_X, temp\_y) temp\_y = temp\_y.values.ravel() temp\_y = y.drop(y.index[i]) temp\_X = X.drop(X.index[i]) rfregressor = RandomForestRegressor(max\_depth=4, random\_state=5) 4 N 1 for i in range(len(y)): temp\_y = y.drop(y.index[i]) temp\_X = X.drop(X.index[i]) temp\_y = temp\_y.values.ravel() rfregressor = RandomForestRegressor(max\_depth=4, random\_sta Traceback (most recent call l 9, Р

Create PDF in your applications with the Pdfcrowd HTML to PDF API

| Kurtosis: | Skew:     | Prob(Omnibus):    | Omnibus:        | Share_65 | Added Levels | Republican | Democrat | Density | Lockdown Length | Population 2019 |         | Covariance Type: | Df Model: | Df Residuals: | No. Observations: | Time:           | Date:               | Method:       | Model:          | Dep. Variable: | OLS Regression Results |
|-----------|-----------|-------------------|-----------------|----------|--------------|------------|----------|---------|-----------------|-----------------|---------|------------------|-----------|---------------|-------------------|-----------------|---------------------|---------------|-----------------|----------------|------------------------|
| 2.350     | 0.010     | 0.710 <b>Jarq</b> | 0.684 <b>Du</b> | -8.4979  | 0.2993       | 2.3586     | 2.3640   | -0.0001 | -0.0331         | 3.654e-08       | coef    |                  |           |               |                   |                 | : Fri, 25 Sep 2020  | Least Squares |                 |                | sults                  |
| Cond. No. | Prob(JB): | Jarque-Bera (JB): | Durbin-Watson:  | 9.139    | 0.302        | 1.499      | 1.616    | 0.000   | 0.015           | 3.23e-08        | std err | nonrobust        | 6         | 33            | 40                | 16:13:37 Lo     |                     | luares        | OLS A           | У              |                        |
|           |           |                   |                 | -0.930   | 0.992        | 1.574      | 1.463    | -0.818  | -2.167          | 1.130           | Ŧ       |                  |           |               |                   | Log-Likelihood: | Prob (F-statistic): | F-sta         | Adj. R-squared: | R-sq           |                        |
| 4.48e+08  | 0.703     | 0.706             | 1.989           | 0.359    | 0.328        | 0.125      | 0.153    | 0.419   | 0.038           | 0.266           | P> t    |                  |           | BIC:          | AIC:              | ihood:          | tistic):            | F-statistic:  | uared:          | R-squared:     |                        |
|           |           |                   |                 | -27.091  | -0.314       | -0.691     | -0.924   | -0.000  | -0.064          | -2.92e-08       | [0.025  |                  |           | 143.9         | 132.0             | -59.017         | 0.0614              | 2.263         | 0.163           | 0.291          |                        |
|           |           |                   |                 | 10.095   | 0.913        | 5.408      | 5.652    | 0.000   | -0.002          | 1.02e-07        | 0.975]  |                  |           |               |                   |                 |                     |               |                 |                |                        |

0ut[889]:

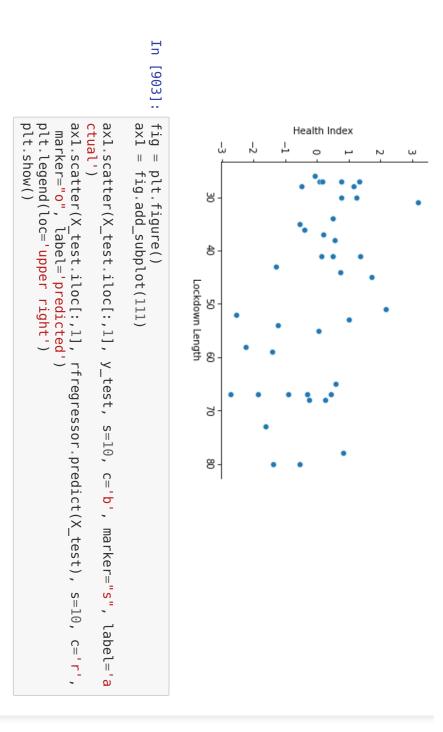
In [889]: LR.summary()

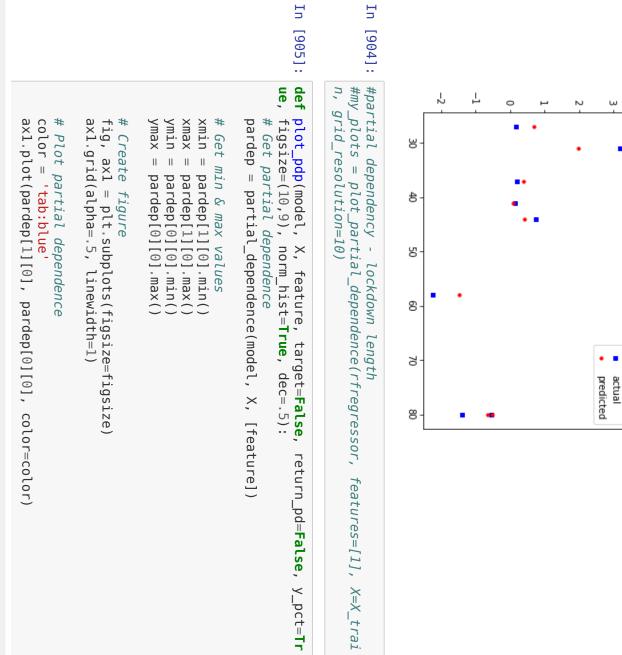
In [894]: Out[974]: array([-0.44019457]) In [974]: Out[969]: array([[6732219, 38, 119.6285983367688, 0, 1, 2, 0.1508273869284407]], In [969]: health\_index.iloc[12, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1) Out[968]: array([0.91188192]) Out[967]: 0.6237966692301442 In [967]: In [968]: X\_train, X\_test, y\_train, y\_test = ms.train\_test\_split(X, y, test\_size= 0.2, random\_state = 5) def pred\_ints(model, X, percentile=95):
 err\_down = [] rfregressor.predict(np.array([6732219, 90, 119.6285983367688, 0,
0.1508273869284407]).reshape(1, -1)) rfregressor.predict(health\_index.iloc[12, [3, 4, strong multicollinearity or other numerical problems. [2] The condition number is large, 4.48e+08. This might indicate that there are [1] Standard Errors assume that the covariance matrix of the errors is correctly specified es.reshape(1, -1)) np.sqrt(np.mean((rfregressor.predict(X\_test) - y\_test)\*\*2)) rfregressor.fit(X, y) rfregressor = RandomForestRegressor(max\_depth=4, random\_state=5) err\_up = [] perc\_50 = [] for x in range(len(X)):
 preds = [] dtype=object) for pred in model.estimators\_: 5, 7, 9, 11, 12]].valu 1, 2

Notes:

| In [896]:                                                                                                                    | Out[895]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In [895]:                                                |                                                                                                                                                                                                                         |                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| <pre>truth = y_test<br/>correct = 0.<br/>for i, val in enumerate(truth):<br/>if err_down[i] &lt;= val &lt;= err_up[i]:</pre> | <pre>([-0.05961785228657985,<br/>-0.4542011945606605,<br/>-1.40289836626688,<br/>0.05793002251319271,<br/>-1.6335839801633703,<br/>-1.399375805583438,<br/>-2.3959525587486623,<br/>-1.29577460389080895],<br/>[1.3964562451662454,<br/>2.1591891992336145,<br/>1.013029230539649,<br/>3.1787760193110546,<br/>0.346541445223477,<br/>1.1085055967097148],<br/>[0.5930460748795401,<br/>0.22284549804598875,<br/>-0.9974719242363628,<br/>3.1787760193110546,<br/>-0.5435340548379382,<br/>0.6676628911436999,<br/>-2.049393386451893,<br/>0.1440144428018571])</pre> | <pre>pred_ints(rfregressor, X_test, percentile=90)</pre> | <pre>err_down.append(np.percentile(preds, (100 - percentile) / 2. )) perc_50.append(np.percentile(preds, 50)) err_up.append(np.percentile(preds, 100 - (100 - percentile) / 2.)) return err_down, err_up, perc_50</pre> | <pre>-1)) preds.append(pred.predict(X_test.iloc[x,].values.reshape(1,<br/>-1))</pre> |

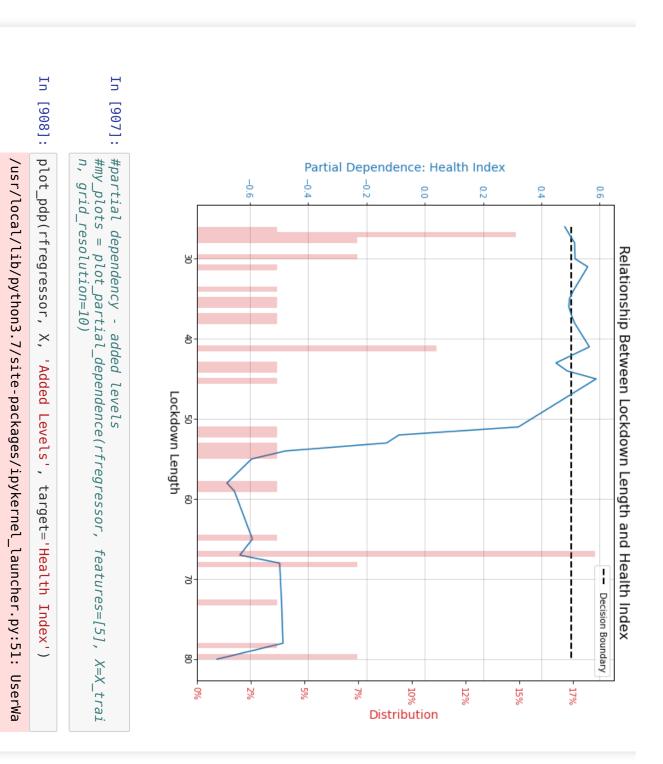
In [902]: In [901]: In [900]: #r2\_score(y\_test, rfregressor.predict(X\_test)) Out[899]: 0.8688545829255999 In [899]: Out[898]: 0.9253695974295977 In [898]: Out[897]: 1.5000959095201696 In [897]: np.std(y\_test) #r2\_score(y\_train, rfregressor.predict(X\_train)) correlation\_matrix = np.corrcoef(rfregressor.predict(X\_test), y\_test) sns.scatterplot( correlation\_matrix = np.corrcoef(rfregressor.predict(X\_train), y\_train) sns.despine() correlation\_xy = correlation\_matrix[0,1]
r\_squared = correlation\_xy\*\*2 r\_squared correlation = correlation\_matrix[0,1] r\_squared r\_squared = correlation\*\*2 data=health\_index x='Lockdown Length', y='Health Index',


0.5 .5

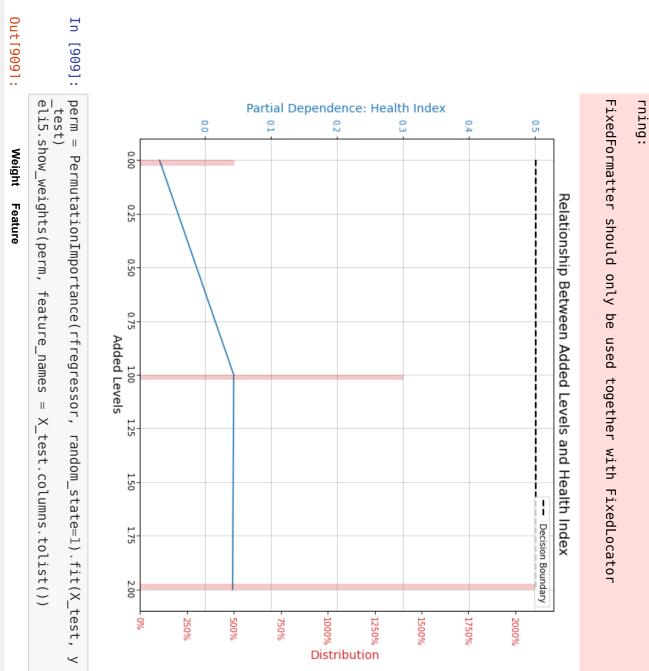

print(correct/len(truth))

correct += 1

Create PDF in your applications with the Pdfcrowd HTML to PDF API






```
inestyle='--', label='Decision Boundary')
ax1.legend()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    or, fontsize=14)
                                                                                                                                                                                                                                                                                                                                                                                                               color, density=norm_hist)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 title), fontsize=16)
                                                                                                                                                                                                                                                                                                                                                                       ax2.tick_params(axis='y', labelcolor=color)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ax1.hlines(dec, xmin=xmin, xmax=xmax, color='black', linewidth=2, l
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ax1.set_title('Relationship Between {} and {}'.format(feature, tar_
                                                                                                                                                                                                                                                    ÷
                                                                                                                                                                                                                                                                                                                                                                                                                                                     ax2.hist(X[feature], bins=80, range=(xmin, xmax), alpha=.25, color=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  color = 'tab:red'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ax2 = ax1.twinx()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               # Plot line for decision boundary
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ax1.set_xlabel(feature, fontsize=14)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ax1.tick_params(axis='y'
                                                                                                                                                                                                                                                                                                                               ax2.set_ylabel('Distribution', color=color, fontsize=14)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            if y_pct and ymin>=0 and ymax<=1:</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          tar_title = target if target else 'Target Variable'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ax1.set_ylabel('Partial Dependence{}'.format(tar_ylabel), color=col
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              tar_ylabel = ': {}'.format(target) if target else ''
                                                                                                                                                                                                                                             y_pct and norm_hist:
                                                                                                                                                                                                     # Display yticks on ax2 as percentages
ax2.set_yticklabels(labels)
                                                                                                                  labels = [item.get_text() for item in ax2.get_yticklabels()]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ax1.set_yticklabels(labels)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  labels = [item.get_text() for item in ax1.get_yticklabels()]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       # Display yticks on ax1 as percentages
                                       labels = ['{}%'.format(label) for label in labels]
                                                                               labels = [int(np.float(label)*100) for label in labels]
                                                                                                                                                             fig.canvas.draw()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               labels = [int(np.float(label)*100) for label in labels]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 fig.canvas.draw()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       labels = ['{}%'.format(label) for label in labels]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ', labelcolor=color)
```

|                                                               |                                                                                   | In [906]:                                                                               |                                            |            |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|------------|
| FixedFormatter should only be used together with FixedLocator | /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa<br>rning: | <pre>In [906]: plot_pdp(rfregressor, X, 'Lockdown Length', target='Health Index')</pre> | <pre>if return_pd:     return pardep</pre> | plt.snow() |







|    | Unnamed:<br>0_x | State                   | Abbreviation | Population<br>2019 | Lockdown<br>Length | Density    | density.1  |
|----|-----------------|-------------------------|--------------|--------------------|--------------------|------------|------------|
| 0  | 0               | Alabama                 | AL           | 4903185            | 26                 | 93.531179  |            |
| -  | -               | Alaska                  | AK           | 731545             | 27                 | 1.114438   |            |
| N  | N               | Arizona                 | AZ           | 7278717            | 45                 | 63.845034  | 63.845034  |
| ω  | ω               | Colorado                | со           | 5758736            | 31                 | 55.319270  | 55.319270  |
| 4  | 4               | Connecticut             | СТ           | 3565287            | 58                 | 643.089286 | 643.089286 |
| G  | ъ               | Delaware                | DE           | 973764             | 68                 | 498.343910 | 498.343910 |
| ი  | б               | District of<br>Columbia | DC           | 705749             | 44                 | 10.732519  | 10.732519  |
| 7  | 7               | Florida                 | FL           | 21477737           | 27                 | 361.328662 | 361.328662 |
| 8  | 8               | Georgia                 | GA           | 10617423           | 27                 | 971.224204 | 971.224204 |
| 9  | 6               | Hawaii                  | Ξ            | 1415872            | 67                 | 16.941537  | 16.941537  |
| 10 | 10              | Idaho                   | D            | 1787065            | 36                 | 30.855088  | 30.855088  |
| 1  | 1               | Illinois                | F            | 12671821           | 67                 | 347.935777 | 347.935777 |
| 12 | 12              | Indiana                 | Z            | 6732219            | 38                 | 119.628598 | 119.628598 |
|    |                 |                         |              |                    |                    |            |            |

PDFCROWD

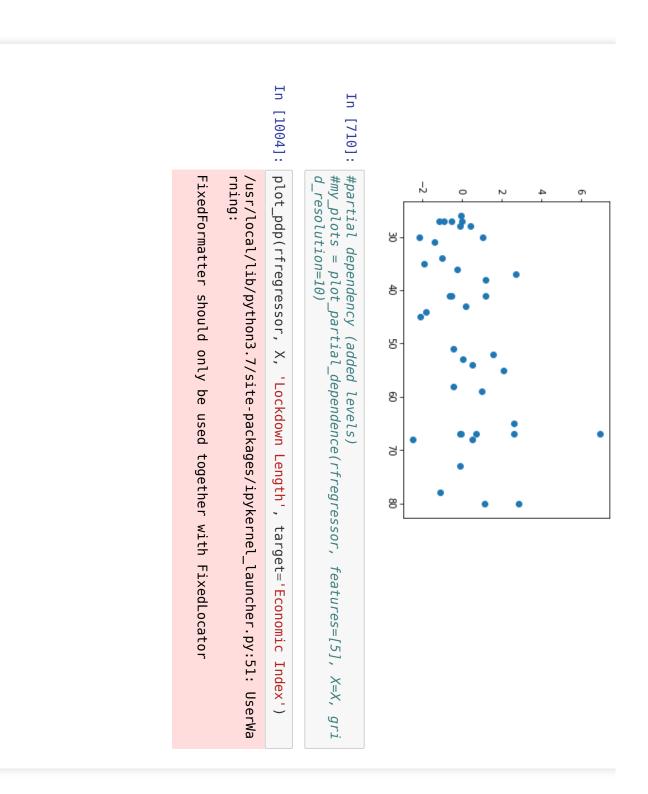
## In [1006]: 0.0658 ± 0.0337 0.0390 ± 0.0582 0.0223 ± 0.0577 0.0041 ± 0.0090 Weight 0.1605 ± 0.2849 $0.0799 \pm 0.1081$ Republican Share\_65 Added Levels Density Population 2019 Democrat Feature Lockdown Length

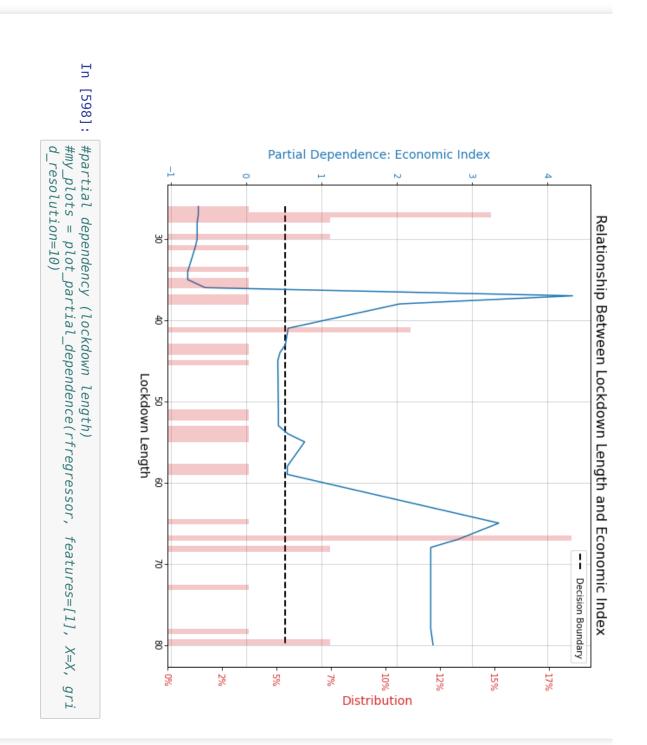
 $1.0898 \pm 0.7635$ 

econ\_index = econ\_index.rename(columns = {'State ':"State"})
econ\_index = econ\_index.rename(columns = {'indexes':"Economic Index"})
econ\_index["State"] = econ\_index["State"].apply(lambda x: x.strip())
econ = pd.merge(health\_index, econ\_index, on='State') econ

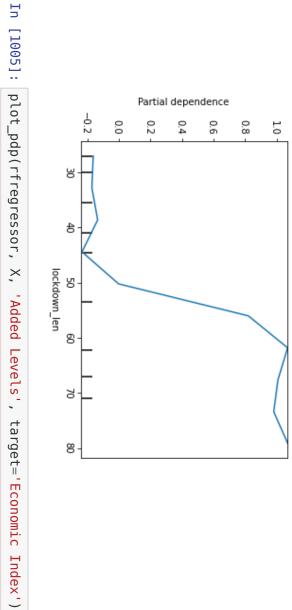
## Out[1006]:

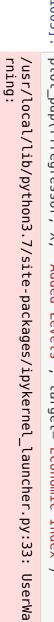
|          | Unnamed:<br>0_x<br>13 | Kansas             | Abbreviation<br>KS | Population<br>2019<br>2913314<br>4648794 | Lockdown<br>Length<br>34 | Density<br>72.092104     | density.1<br>72.092104 |
|----------|-----------------------|--------------------|--------------------|------------------------------------------|--------------------------|--------------------------|------------------------|
| 15<br>15 | 14<br>15              | Louisiana<br>Maine | ME                 | 4648794<br>1344212                       | 54<br>59                 | 131.370108<br>108.343032 |                        |
| 16       | 16                    | Massachusetts      | MA                 | 6892503                                  | 55                       | 71.196188                |                        |
| 17       | 17                    | Michigan           | M                  | 9986857                                  | 65                       | 114.866717               |                        |
| 18       | 18                    | Minnesota          | MN                 | 5639632                                  | 51                       | 116.439526               |                        |
| 19       | 19                    | Mississippi        | MS                 | 2976149                                  | 41                       | 42.693899                |                        |
| 20       | 20                    | Missouri           | MO                 | 6137428                                  | 27                       | 41.738150                |                        |
| 21       | 21                    | Montana            | MT                 | 1068778                                  | 28                       | 13.815998                |                        |
| 22       | 22                    | Nevada             | NV                 | 3080156                                  | 37                       | 329.393220               |                        |
| 23       | 23                    | New<br>Hampshire   | NH                 | 1359711                                  | 80                       | 155.894405               |                        |
| 24       | 24                    | New Jersey         | Ŋ                  | 8882190                                  | 80                       | 73.048531                |                        |
| 25       | 25                    | New Mexico         | NM                 | 2096829                                  | 68                       | 38.491583                |                        |
| 26       | 26                    | New York           | NΥ                 | 19453561                                 | 67                       | 361.449267               |                        |
| 27       | 27                    | North Carolina     | NC                 | 10488084                                 | 53                       | 148.337916               |                        |
| 28       | 28                    | Ohio               | ЮН                 | 11689100                                 | 67                       | 167.218860               |                        |
| 29       | 29                    | Oklahoma           | OK                 | 3956971                                  | 43                       | 40.218842                |                        |
| 30       | 30                    | Pennsylvania       | PA                 | 12801989                                 | 73                       | 8286.077023              | 8286.077023            |
| 31       | 31                    | Rhode Island       | 찐                  | 1059361                                  | 41                       | 33.097791                |                        |
| 32       | 32                    | South Carolina     | SC                 | 5148714                                  | 28                       | 66.761505                |                        |
| 33       | 33                    | Tennessee          | TN                 | 6829174                                  | 30                       | 25.424976                |                        |
| 34       | 34                    | Texas              | ТX                 | 28995881                                 | 30                       | 341.513721               |                        |
|          |                       |                    |                    |                                          |                          |                          |                        |


| PDFCF |  |  |
|-------|--|--|
| ROWD  |  |  |
|       |  |  |


|                                                                                                                                                                                     | In [924]:                                                                                                                                                                                                                                                                                                                                                                    | In [1007]:                                                                                                                                         |   |                      |               |            |            |           |            |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------|---------------|------------|------------|-----------|------------|--------------------|
| 0 [0.8<br>1 [-1.<br>2 [3.7<br>3 [1.2<br>5 [1.5<br>5 [1.5<br>7 [-0.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              | X =<br>#X =<br>#y =<br>y =                                                                                                                         |   | 40 rows              | 39            | 38         | 37         | 36        | 35         | Un                 |
| 514288<br>578821<br>145558<br>160093<br>591709<br>591709<br>197627<br>197627<br>115963<br>115963                                                                                    | <pre>in ran<br/>imp_X =<br/>imp_y =<br/>regres<br/>regres<br/>regres<br/>regres<br/>regres</pre>                                                                                                                                                                                                                                                                             | on.ilo<br>on.ilo<br><i>.drop(</i><br>values                                                                                                        |   | 40 rows × 21 columns | 39            | 38         | 37         | 36        | 35         | Unnamed:<br>0_x    |
| 0.851428868768763]<br>-1.5788217729574068]<br>3.714555804725369]<br>1.2160093484207768]<br>10.591709298909816]<br>1.5197627420769493]<br>6.111596366163483]<br>-0.6391143263823982] | <pre>for i in range(len(y)):     temp_X = X.drop(X.index[i])     temp_y = y.drop(y.index[i])     temp_y = temp_y.values.ravel()     rfregressor = RandomForestRegressor(max_depth=4, random_state=5)     rfregressor.fit(temp_X, temp_y)     print(i, rfregressor.predict(econ.iloc[i, [3, 4, 5, 7, 9, 11, 12]].     values.reshape(1, -1))-econ.iloc[i, [20]].values)</pre> | <pre>X = econ.iloc[:, [3, 4, 5, 7, 9, 11, 12]] #X = X.drop(X.index[12]) y = econ.iloc[:, [20]] #y = y.drop(y.index[12]) y = y.values.ravel()</pre> | l | umns                 | West Virginia | Washington | Virginia   | Vermont   | Utah       | State              |
|                                                                                                                                                                                     | :<br>index[i])<br>index[i])<br>lues.ravel(<br>ues.ravel(<br>pmForestReg<br>mp_X, temp_<br>pr.predict(<br>pr.predict(                                                                                                                                                                                                                                                         | , 5, 7, 9,<br>])<br>])                                                                                                                             |   |                      | Ŵ             | WA         | VA         | ۲V        | UT         | State Abbreviation |
|                                                                                                                                                                                     | ()<br>gressor(ma<br>_y)<br>(econ.iloc<br>[i, [20]].                                                                                                                                                                                                                                                                                                                          | 11, 12]]                                                                                                                                           |   |                      | 1792147       | 7614893    | 8535519    | 623989    | 3205958    | Population<br>2019 |
|                                                                                                                                                                                     | x_depth=4<br>[i, [3, 4<br>values)                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |   |                      | 41            | 67         | 78         | 52        | 35         | Lockdown<br>Length |
|                                                                                                                                                                                     | l, random_<br>l, 5, 7, 9                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                    |   |                      | 27.359770     | 314.262432 | 119.707712 | 14.589750 | 333.432969 | Density            |
|                                                                                                                                                                                     | state=5)<br>, 11, 12]:                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |   |                      | 27.359770     | 314.262432 | 119.707712 | 14.589750 | 333.432969 | density.1 De       |
|                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    | • |                      |               |            |            |           |            | De                 |

|                    |           |                   |                   |          |              |            |          |         |                 |                 |         |                  |           |               |                   |                 |                     |               |                 |                | Out[704]:              | In [704]:                                       |
|--------------------|-----------|-------------------|-------------------|----------|--------------|------------|----------|---------|-----------------|-----------------|---------|------------------|-----------|---------------|-------------------|-----------------|---------------------|---------------|-----------------|----------------|------------------------|-------------------------------------------------|
| Kurtosis:          | Skew:     | Prob(Omnibus):    | Omnibus:          | Share_65 | Added Levels | Republican | Democrat | Density | Lockdown Length | Population 2019 |         | Covariance Type: | Df Model: | Df Residuals: | No. Observations: | Time:           | Date:               | Method:       | Model:          | Dep. Variable: | OLS Regression Results | <pre>LR = sm.OLS(y, X).fit() LR.summary()</pre> |
| 6.415              | 0.788     | 0.001 <b>Jarq</b> | 13.454 <b>D</b> u | 26.7997  | -0.1435      | -5.1084    | -4.5396  | -0.0001 | 0.0223          | -3.932e-09      | coef    | nonrobust        |           |               |                   | 14:4            | Fri, 25 Sep 2020    | Least Squares |                 |                | ults                   | , X).fit(                                       |
| Cond. No.          | Prob(JB): | Jarque-Bera (JB): | Durbin-Watson:    | 12.788   | 0.422        | 2.097      | 2.261    | 0.000   | 0.021           | 4.52e-08        | std err | obust            | 0         | 33            | 40                | 14:40:10 Lo     |                     | uares         | OLS Ad          | Y              |                        |                                                 |
| <b>o.</b> 4.48e+08 |           |                   |                   | 2.096    | -0.340       | -2.436     | -2.008   | -0.635  | 1.043           | -0.087          | +       |                  |           |               |                   | Log-Likelihood: | Prob (F-statistic): | F-statistic:  | Adj. R-squared: | R-squared:     |                        |                                                 |
| e+08               | 7.61e-06  | 23.573            | 1.864             | 0.044    | 0.736        | 0.020      | 0.053    | 0.530   | 0.304           | 0.931           | P> t    |                  |           | BIC:          | AIC:              |                 | stic):              | istic:        | ared:           | ared:          |                        |                                                 |
|                    |           |                   |                   | 0.783    | -1.002       | -9.375     | -9.140   | -0.001  | -0.021          | -9.59e-08       | [0.025  |                  |           | 170.7         | 158.9             | -72.455         | 0.102               | 1.949         | 0.127           | 0.262          |                        |                                                 |
|                    |           |                   |                   | 52.816   | 0.715        | -0.841     | 0.061    | 0.000   | 0.066           | 8.81e-08        | 0.975]  |                  |           |               |                   |                 |                     |               |                 |                |                        |                                                 |


| Out[1010]: a                                                                             | In [1010]: e                                                | 0ut[1009]: a                    | In [1009]: r <sup>.</sup>                                                                    | Out[998]: a                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In [998]: y | Out[1008]: 6       | In [1008]: X<br>r<br>r<br>n<br>n                                                                                                                                                                                                                                             | st [2 ] Z                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| array([[4903185, 26, 93.53117906262518, 0, 1, 1, 0.16540024494282798]],<br>dtype=object) | econ.iloc[0, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1) | Out[1009]: array([-1.43193918]) | <pre>rfregressor.predict(econ.iloc[0, [3, 4, 5, 7, 9, 11, 12]].values.reshap e(1, -1))</pre> | array([-2.18159879, -0.35539157, -2.92476745, -2.93690662, -6.13638926,<br>3.0839055, -4.20387385, 0.65645336, -3.10261679, 14.8710528,<br>-4.17911353, 4.24575168, 2.42697252, -3.61651444, 2.38277479,<br>-4.43937593, -3.79232787, 20.86150866, 4.19638493, 3.65887747,<br>-4.01783013, 2.88852179, -0.55614195, 3.7078234, 0.3058497,<br>2.31902801, 5.80890427, -1.01599634, 0.25991562, -0.45189116,<br>-5.56879575, 2.14758381, -4.62135535, 3.44136913, 1.7367593<br>9]) |             | 6.3562407944387225 | <pre>X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=<br/>0.2, random_state = 0)<br/>rfregressor = RandomForestRegressor(max_depth=2, random_state=0)<br/>rfregressor.fit(X, y)<br/>np.sqrt(np.mean((rfregressor.predict(X_test) - y_test)**2))</pre> | Notes:<br>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.<br>[2] The condition number is large, 4.48e+08. This might indicate that there are<br>strong multicollinearity or other numerical problems. |


- Out[1017]: array([-0.04315836])
- In [706]: correlation\_matrix = np.corrcoef(rfregressor.predict(X\_test), y\_test) correlation = correlation\_matrix[0,1] r\_squared r\_squared = correlation\*\*2
- Out[706]: 0.3328969578527192
- In [707]: correlation\_matrix = np.corrcoef(rfregressor.predict(X\_train), y\_train) correlation = correlation\_matrix[0,1]
  r\_squared = correlation\*\*2 r\_squared
- Out[707]: 0.7499976542385185
- In [708]: # r2\_score(y\_test, rfregressor.predict(X\_test))
- In [709]: plt.scatter(X.iloc[:, 1], y)
- Out[709]: <matplotlib.collections.PathCollection at 0x11f902490>



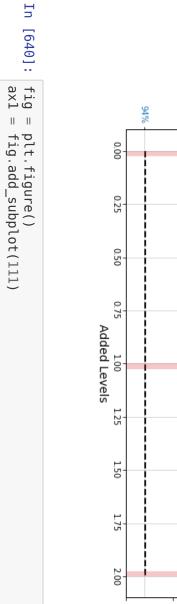


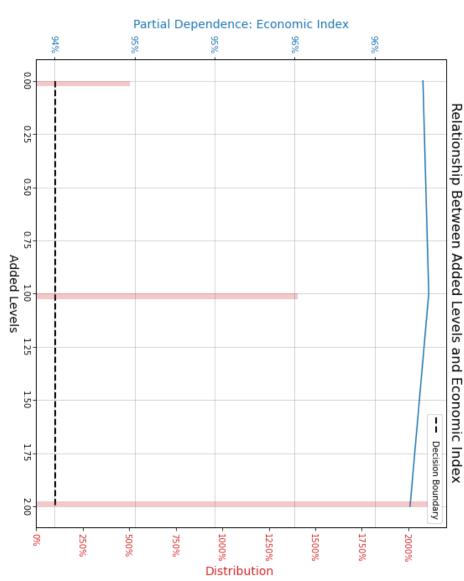


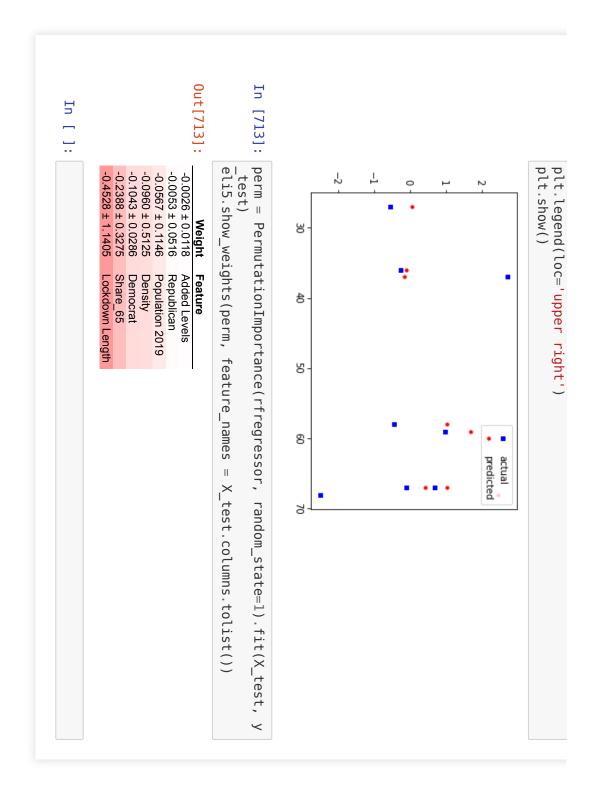




ſ


FixedFormatter should only be used together with FixedLocator


rning: /usr/local/lib/python3.7/site-packages/ipykernel\_launcher.py:51: UserWa


FixedFormatter should only be used together with FixedLocator

Create PDF in your applications with the Pdfcrowd HTML to PDF API

ax1.scatter(X\_test.iloc[:,1], rfregressor.predict(X\_test), s=10, c='r', marker="o", label='predicted') ax1.scatter(X\_test.iloc[:,1], y\_test, s=10, c='b', marker="s", label='a ctual')





