
ECONOMICS OF
COVID-19 LOCKDOWNS:
Optimizing the Lockdown Health-Economy Tradeoff

Team Woahhhh
David Fan, Isabelle Tao, Lucy Cao, Emma Lu

TEAM

2

DAVID FAN • Manila, Philippines

ISABELLE TAO • Singapore, Singapore

LUCY CAO • Shanghai, China

EMMA LU • Vancouver, Canada

Isabelle is a senior concentrating in Business Analytics at the
University of Pennsylvania. She interned at McKinsey & Company as a
Business Analyst in the digital practice the past summer, where she
enjoyed working on digital transformation for large companies in the
consumer electronics industry. She also enjoys brewing Kombucha and
watercoloring.

Lucy is a senior at the University of Pennsylvania majoring in
Cognitive Science and Computer Science. This past summer, Lucy
worked at McKinsey & Company as a Summer Analytics Fellow
transforming businesses’ decision-making with advanced analytics. In
her free time, she likes to make song covers and visit escape the rooms.

Emma is a senior in the Roy & Diana Vagelos Life Sciences and
Management program at the University of Pennsylvania. She is
majoring in Computational Biology, Finance, and Statistics. Over the
summer, Emma worked at Bain & Company as a Associate Consultant
Intern advising clients on investment decisions. Her hobbies include
reading biographies, hiking, and gardening.

David is studying towards both a MSE in Data Science and a BS in
Economics. As an aspiring data scientist, David has interned at
Facebook and Grab in Data Science roles over the past summers. He
also heads the Analytics department at the Daily Pennsylvanian. David
enjoys Chinese rap music, sitcoms, and NBA statistics.

BACKGROUND

The Covid-19 pandemic has forced many countries to
use lockdowns as a public health measure to prevent
further spread of the disease, often at the expense of
slowed economic activities. The lockdown-induced
trade-off between economic and health outcomes has
underscored the importance to evaluate the
effectiveness of lockdowns.

We focus on the US economy given its leading world
count in Covid-19 cases and its economy’s influence
on the global economy. In addition, US states have
experienced varying levels of lockdown success,
allowing for further investigation. We evaluated the
health and economic outcomes of different US state
lockdown policies that vary in duration and
stringency, adjusted based on the states’
characteristics, to determine the optimal lockdown
policies that would maximize both health and
economic outcomes.

METHODOLOGY

To understand the effects of lockdown, we first created
created an index that tracks multiple health and
economic indicators for each of the 50 states when the
lockdown policies were imposed. This was done by
first standardizing these metrics and feeding them
through a Principal Component Analysis (PCA).

Then we selected control variables (Population
Density, Population Size, Political Leaning, and Share
of Population above 65 years old) that might also play
a part on lockdown outcomes independent of
government intervention. Finally, lever variables
(Duration and Stringency of lockdown) were selected
for their direct relationship to the characteristic of the
lockdown.

We further analyzed the relative variable importance
between the nuisance and lever variables, generated
Partial Dependence Plots to understand each lever’s
marginal effects, and conducted a case study to
understand the synergies between potential government
interventions.

KEY OBSERVATIONS

1. Lockdown length is more important than
lockdown stringency to contain the virus.
Our analysis shows that the longer the length of
the lockdown, the more effective the lockdown
is. Stringency on the other hand, has an inverse
effect on the health index. This means that states
with more stringent lockdowns actually promotes
more rebellious behavior which causes more
deaths, hospitalizations and spikes in cases.

2. Lockdown length and stringency are both not
strongly correlated with decline in GDP and
increase in unemployment.
While it is common to assume that the longer the
lockdown, the worse the length of the state of the
economy, our analysis shows that that is not the
case. Given alternative consumption methods
(online shopping) and alternative working
options (work from home), consumption and
productivity can still be sustained. This is aligned
with results globally: the actual or expected drop
in GDP, across OECD countries is not as
strongly correlated with lockdown lengths or
stringency. (McKinsey Analytics)

3. The most effective lockdown duration is
between 55 and 60 days.
We found that there is a golden period where
lockdowns are the most effective. When the
lockdown is below 55 days, it’s insufficient to
cause a decline in cases. When the lockdown is
above 60 days, there is essentially no effect for
both health index and economic index.

NEXT STEPS

First, we hope to incorporate more granular county
level data, so we can add in more control variables
and obtain results that are of higher statistical
significance. Second, we hope to extend these
results globally to check if our observations apply to
global situations.

3

ABSTRACT Executive Summary
Key Takeaways

Introduction
Covid-19 lockdowns have been implemented around the
world for public health reasons. While lockdowns are
undoubtedly an effective public health measure, they
also limit economic activities and negatively affect
economic growth. For example, the US, leading the
world charts with over 7 million Covid-19 cases, had a
GDP fall of 32.9% (annualized rate) in Q2 2020, the
lowest since 1947.

Policymakers are faced with the challenge of balancing
the health and economic trade-off. If a lockdown is
lifted too quickly, it could cause a re-surge in cases,
resulting in more lockdowns. Alternatively, a lockdown
that is too long could cause detriments to the economy
that will take years to recover. Our knowledge of the
lockdown’s effectiveness is limited and there are few
historical data references. With over six months of
current data and different states employing different
policies, it is possible to empirically assess the
outcomes from these lockdowns to derive additional
understandings of the optimal trade-off.

We aim to create a model that stimulates real-world
reactions at the state-level towards different lockdown
policies. The model will allow policymakers to forecast
lockdown effectiveness and economic impacts. Our
model can also be used as an evidence-based
argument to improve policy adherence.

Analytical Approach
While Covid-19 lockdowns have garnered much interest
from health and economic experts, there still remain
many gaps in the literature of assessing the effect of
lockdown measure that we aim to investigate.

Index Construction
First, we needed a metric that will allow us to measure
the health and economic outcomes of lockdowns.
Since outcomes can be measured using many indicators,
we created two indices that combined relevant
variables to track the health and economic outcomes of
a state’s lockdown policy.

These indicators were created through factor analysis
where we utilized the top Principal Component across
individual indicators. This served 2 main purposes; first,
we want to be able to isolate the underlying latent
state of either health or economics that causes the
observables as opposed to relying on the observed
metrics themselves. This is because metrics observed
(death, cases in the health cases, or GDP and
unemployment in the econ cases) are subjected to some
degree of randomness and may therefore individually
exhibit variation that would add noise to our data.
Secondly, the creation of indexes lessens additional
model we need to run in order to incorporate various
health outcomes, drastically simplifying the process.

4

Figure 1: Approach Summary

MODELING Background
Analytical Approach

Health Index
The Health Index is created to access the coronavirus
cases in states during the lockdown. The higher the
absolute number of the health index, the worse the
performance of the lockdown. Given that this measure
is a gradient, we opted to focus on the percentage
decline of 3 key health attributes: daily number of
deaths, number of hospitalized, and number of cases.

We obtained the decline rate of each of these 3 health
attributes during the lockdown using the following
method. First, we obtained the highest number for
each of these 3 metrics during the lockdown. Next, we
extracted these 3 metrics on the last day of the
lockdown. Lastly, we divided the final day metric by the
maximum metric to get the gradient change during the
period.

In simple terms, the higher the gradient change ratio,
the less effective the lockdown is, because the
lockdown did not improve the health metric as
expected. If the ratio is low, it indicates that the
lockdown is effective in lowering the cases from the
peak.

As indicated earlier, we wanted to combine these 3 high
level metrics into one overall indicator. This was done
by first standardizing these metrics and feeding
them through a Principal Component Analysis
(PCA). As expected, the leading principal component
was able to explain 52% of the variation in these
metrics, making it a fair representation of the underlying
health traits. The loading score of the aforementioned
indicator are all around 0.5, indicating that a one unit
increase in health index correspond to half a standard
deviation increase gradient change, pointing to a less
effective lockdown.

Economic Index
Similar to the health index, the economic index is
created to gauge the overall decline in state economic
condition.

MODELING

This measure was done with the use of gradient change
for 2 metrics: GDP decline from 2019 Q4 to 2020 Q1,
and unemployment rate increase from February 2020 to
April 2020.

Since both metrics were already in their natural
percentage format, rescaling is no longer necessary. We
simply performed our factor analysis using PCA on
both these gradients.

The leading component using the PCA was able to
explain 71% of the total variation in the gradient
once again, making a viable candidate to represent the
underlying economic drivers. The loading vectors for
GDP change is -0.7 and 0.7 for unemployment change.
This means as one unit of economic index increases, we
would expect the GDP to decrease by 0.7% while
unemployment rate to increase by 0.7%.

Control Variables and Lever Variables
After constructing the indexes needed for our target
variable, we now move on to create the left hand side of
our equation, or the x-variables.

When considering our x-variables, we looked at
variables that may affect our aforementioned
indexes independent of any kind of intervention that
the government attempts. We refer to these variables
as our control variables. While it may be ideal to
include as many control variables as possible to create
impartial results, since we are using state level dataset
with limited amount of observations (50 states at most),
to avoid the curse of dimensionality problem, we opted
to only include 4 main control variables: Population
Density, Population, Political Leaning and Share of
Population above 65 years old. These variables are
selected due to how they may directly affect the indexes
at hand without the Gov’t intervention.

For our lever variables, we selected two main
characteristic related lockdown: the length of the
lockdown and the relative stringency of lockdown
which is anchored on two characteristics: 1) Whether
the state required masks and 2) whether the state
implemented a penalty for violating the rules

5

Index Construction
Variable Selection

Initial Model Performance
We performed an initial linear regression model to
assess the relationship between lockdown length and the
health index. We found that the linear regression model
gave us an r-squared of 0.279 and we also found the
lockdown length variable to be statistically
significant with a p-value of 0.035. Similarly, we fitted
a second linear regression model to evaluate the
relationship between lockdown length and the
economic index. We found that this linear regression
model had an r-squared of 0.262. In this model, we
found that the republican feature is statistically
significant with a p-value of 0.020.

Improved Model Performance
We then performed a random forest model to account
for potentially non-linear relationships between the
variables and the indices as well as increase predictive
power of our modeling. Moreover, through partial
dependence plots we can better understand the
marginal effect of the length and stringency of
lockdown on economic and health outcomes. We first
performed a 20% split on the data set, with 80% of the
data in the training set and 20% of the data in the test
set.

This model gave us a better predictive ability overall
for our dataset. This includes a 0.9 r-squared for our
training dataset and a 0.4 r-squared for our test dataset
when predicting the health indexes and 0.75 r-squared
for our training dataset and a 033 r-squared for our test
dataset when predicting the econ indexes. We then set
out to draw additional inference from the model.

Variable Relative Importance
First we aim to analyze the variable importance
information within our two models. Starting off with the
health index model.

It is apparent from the variable importance plot that the
lockdown length is by far the most important
variable in our dataset superseding even the control
variables that we have included. This generally is in
line with our hypothesis that the length of lockdown
will very likely benefit the states in terms of
containing the spread of the virus.

Stringency of lockdowns, on the other hand,
represented by the added levels variable, ranks third in
importance, indicating that it does somewhat still have
an effect on the indexes but just not as apparent as the
length itself. This can be an artifact of the majority
perception of lockdown such that most individuals are
likely to abide by the rules regardless of stringency

For the econ model on the other hand,

the variable importance is rather interesting. No
individual variable stood out too strongly in terms of
how irreplaceable it is in our model. It is especially
quite interesting to see that the Lockdown Length
actually did not seem to impact the econ index at all
from a variable importance point of view. These results
regardless should be taken with a grain of salt given the
huge variation around the weight of these variables.
Nonetheless, an insight from this point of view is that
the economic downfall during COVID may not
necessarily be as related to the lockdown given the rise
of alternative consumption methods and alternative
work opportunities.

Partial Dependence Plots
We now want to take a deep-dive into the health index
model and examine the two lever variables of interest
that we have identified: Lockdown length and
stringency. This is specifically done for the health index
case as it is in there that both lockdown length and
added levels were most significant

Optimal Tradeoffs

6

Weight Feature
 0.5357 ± 0.4113 Lockdown Length
 0.0115 ± 0.2518 Population 2019
 0.0106 ± 0.0108 Added Levels
 0.0096 ± 0.0161 Republican
-0.0015 ± 0.0055 Democrat
-0.0565 ± 0.1245 Density
-0.1444 ± 0.1540 Share_65

Table 1: Feature Importance of Health Index

Weight Feature
-0.0026 ± 0.0118 Added Levels
-0.0053 ± 0.0516 Republican
-0.0567 ± 0.1146 Population 2019
-0.0960 ± 0.5125 Density
-0.1043 ± 0.0286 Democrat
-0.2388 ± 0.3275 Share_65
-0.4528 ± 1.1405 Lockdown Length
Table 2: Feature Importance for Economic Index

Model Performance
Feature Interpretations

MODELING

The deep dive into the partial dependence plots shed
light on something extremely interesting. As expected,
the partial dependence plots for the lockdown
periods follows a negative relationship with the
health index (i.e., as lockdown length increases, we see
a greater reduction in cases from the peak). The effect is
actually not fully continuous but there is a sharp
increase in effectiveness of lockdown at around 55-60
days and later remains flat. While not conclusive, this
gives us an idea to the ideal lockdown period.

Another interesting insight that emerged is that
lockdown stringency actually may trigger an inverse
reaction that governments do not expect. Specifically,
we saw that as stringency increases, the health index
actually rose gradually, indicating a less effective
lockdown. This is likely due to individuals feeling too
suppressed and constrained by the lockdown and end up
not abiding by the lockdown rules altogether.

Case Studies
In order to better understand the effect of lockdown
length on the health and economic outcomes, we
decided to look more closely at how states health and
economic indices change when lockdown lengths are
altered. For Texas, with an original 30-day lockdown,
we predicted the health index to be 0.82. However,
when we extend this lockdown period to 60 days, the
health index decreases to -0.61 and when we further

7

Partial Dependence
Discussion & Conclusion

MODELING

extend this lockdown period to 90 days, the health index
decreases to -0.84. This result is consistent with our
finding that longer lockdowns lead to better
containment of the disease and better health
outcomes. We also took a look at the economic index
and found that adjusting the lockdown period does not
drastically affect the economic index. For the state of
Alabama, we notice that the economic index with the
original 26-day lockdown is predicted to be -1.43 while
an extension of the lockdown to 40 days gives us an
economic index of -0.21 and an extension to 60 days
gives us a new prediction of -0.05.

Conclusion & Next Steps
This study from a theoretical level showed that
lockdown length, stringency and efficiency is not a
purely additive function. Lockdown length and
stringency does not have a positive linear function with
improved health outcomes. Instead, the the best
approach to achieve an efficient lockdown is often a
combination the right length with a lesser emphasis
on stringency. Furthermore we also explored and
realized that the lockdown length and stringency does
not drastically affect the economic status of states due to
the rise of other opportunities.

In the future, we wish to extend this study to a county
but also a global level in order to incorporate more
control variables but also allow us to create statistical
models with more confidence from more observations.

Figure 2: Partial dependence (lockdown length) Figure 3: Partial dependence (lockdown stringency)

SOURCES

Data Sets:
1. Population.csv: Population of each state

(https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html)
2. Area.csv: Area of each state (https://www.kaggle.com/giodev11/usstates-dataset?select=state-areas.csv)
3. Deaths.csv: Number of deaths during the lockdown (https://covidtracking.com/data)
4. Hospitalized.csv: Number of hospitalizations during the lockdown (https://covidtracking.com/data)
5. Cases.csv: Total number of cases during the lockdown (https://covidtracking.com/data)
6. Unemployment.csv: Unemployment rate of each state from March 2020 - July 2020

(https://carsey.unh.edu/COVID-19-Economic-Impact-By-State)
7. GDP.csv: GDP change from each state from Q4 2019 to Q1 2020 (https://www.bea.gov/data/gdp/gdp-state)

References:
McKinsey & Company (2020), More stringent lockdowns aren’t necessarily worse for GDP
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/covid-19-saving-thousands-of-l
ives-and-trillions-in-livelihoods

Code:
1. Python and Jupyter Notebook were primarily used for data wrangling, EDA, and preliminary

visualization. We used standard libraries such as pandas, numpy, matplotlib, seaborn, scipy, etc.

8

APPENDIX

9

Appendix 1: Model Specifications

Figure 4: Linear Regression Health Index Figure 5: Linear Regression Econ Index

APPENDIX

10

Appendix 2:

Figure 6

Figure 7

In [1]:
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
 from bs4 import BeautifulSoup
import requests
from selenium.webdriver import Chrome
from selenium.webdriver.support.select import Select
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support.expected_conditions import visibility_o
f_element_located, element_to_be_clickable
import os
 #Insert chrome driver directory here
from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager
 driver = webdriver.Chrome(ChromeDriverManager().install())

In [6]:
driver.get('https://infogram.com/reopening-chart-1h7j4dmw0wqx4nr')

In [23]:
ds = pd.DataFrame(np.reshape([i.text for i in driver.find_elements_by_t
ag_name('td')],(51,5)).tolist())

In [25]:
ds

Out[25]:
0

1
2

3
4

0
Alabam

a
April 4 - April 30;

Penalties not
m

entioned.

Alabam
a has

reopened retail
stores, restaurant...

Yes – required for
anyone older than

age 6 on ...

There are no
statew

ide
restrictions.

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

0
1

2
3

4

1
Alaska

M
arch 28 - April 24:

A business or
organizatio...

Alaska has
reopened retail

stores, dining, bar...
N

o
All non-residents

entering the state
m

ust prov...

2
Arizona

M
arch 31 - M

ay 15;
Prior to any

enforcem
ent ac...

Arizona has
reopened retail

stores, restaurant...
N

o
There are no

statew
ide

restrictions.

3
Arkansas

N
o stay at hom

e
order.

Arkansas never
issued a stay-at-

hom
e order and...

Yes – required for
anyone age 10 or

older in p...

There are no
statew

ide
restrictions.

4
C

alifornia
M

arch 19 until lifted;
Any person that

refuses...

M
ost counties have

reopened
restaurants and

pe...

Yes – required for
anyone age 2 or

older in pu...

There are no
statew

ide
restrictions.

5
C

olorado
M

arch 26 - April 26:
Local authorities

have di...

C
olorado has

reopened retail
stores, restauran...

Yes – required for
anyone age 10 in

public ind...

There are no
statew

ide
restrictions.

6
C

onnecticut
M

arch 23 - M
ay 20:

Penalties not
m

entioned

C
onnecticut has
reopened retail
stores, m

alls,...

Yes – required for
anyone age 2 or

older in pu...

Travelers from
 a

state w
ith a current

daily po...

7
D

elaw
are

M
arch 24 - M

ay 31:
Failure to com

ply is
a crim

...

D
elaw

are has
reopened retail

stores, m
alls, fa...

Yes – required for
anyone over the

age of 12 w...

There are no
statew

ide
restrictions.

8
D

istrict of
C

olum
bia

April 1 - M
ay 15:

Any individual or
entity tha...

W
ashington, D

C
 has

reopened
restaurants w

ith o...

Yes – R
equired for

anyone over the
age of 2 w

h...

Visitors w
ho have

been to a high-risk
states i...

9
Florida

April 3 - April 30:
Extended to June 12

for th...

Florida has
reopened retail

stores, restaurant...
N

o
There are no

statew
ide

restrictions.

10
G

eorgia
April 3 - April 30

(extended to June
12 for th...

G
eorgia has

reopened gym
s,

personal care
servi...

N
o

There are no
statew

ide
restrictions.

11
H

aw
aii

M
arch 25 - M

ay 31:
Any person w

ho
intentionall...

H
aw

aii has
reopened beaches,
piers, docks, sta...

Yes - required to
enter a business or

public s...

Travelers and
residents arriving

from
 out of s...

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

0
1

2
3

4

12
Idaho

M
arch 25 - April 30:

Violation of or failuret...

Idaho has reopened
retail stores,

restaurant d...
N

o
The state is

encouraging those
traveling from

 ...

13
Illinois

M
arch 25 - M

ay 31:
M

ay be enforced by
state an...

Illinois has
reopened retail

stores, restauran...

Yes – required for
anyone over the

age of 2 in...

The state is
encouraging

travelers from
 a

coun...

14
Indiana

M
arch 24 - M

ay 1:
M

ay be enforced by
state and...

Indiana has
reopened retail

stores, restaurant...

Yes – required for
anyone age 8 or

older w
hen ...

There are no
statew

ide
restrictions.

15
Iow

a
N

o stay at hom
e

order.

Iow
a never issued a

stay-at-hom
e order

but ins...
N

o
There are no

statew
ide

restrictions.

16
Kansas

M
arch 30 - M

ay 3:
Penalties not

m
entioned.

Kansas has
reopened gym

s,
personal care

servic...

Yes – required for
anyone over the

age of 5 in...

Those w
ho are

entering the state
w

ho have trav...

17
Kentucky

In effect for the
duration of the state

em
erge...

Kentucky has
reopened retail

stores, restauran...

Yes – required for
anyone older than

age of 5 ...

There are no
statew

ide
restrictions.

18
Louisiana

M
arch 22 - M

ay 15:
The governor's
O

ffice of H
o...

Louisiana has
opened retail stores,

m
alls, per...

Yes – required for
anyone age 8 or

older in pu...

There are no
statew

ide
restrictions.

19
M

aine
April 2 - M

ay 31.
The order w

ill be
enforced b...

M
aine has reopened

retail stores,
restaurants,...

Yes – required for
anyone over the

age of 2 in...

Travelers from
 all

states m
ust self-

quarantine...

20
M

aryland
U

ntil term
ination of

the state of
em

ergency an...

M
aryland has

reopened retail
stores, m

alls, ou...

Yes – required for
anyone over the

age of 5 in...

The state strongly
discourages travel

to or fr...

21
M

assachusetts
M

arch 24 - M
ay 18:

Penalties not
m

entioned.

M
assachusetts has
reopened outdoor

recreation,...

Yes – required for
anyone over the

age of 2 in...

Travelers from
 all

states (except C
T,

C
O

, D
E, ...

22
M

ichigan
M

arch 24 - M
ay 28:

Lifted M
ay 18 for the

U
pper...

M
ichigan has

reopened retail
stores, restauran...

Yes – required for
anyone over age 4

in all in...

There are no
statew

ide
restrictions.

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

0
1

2
3

4

23
M

innesota
M

arch 27 - M
ay 17:

A person w
ho

w
illfully viol...

M
innesota has

reopened industrial
and m

anufact...

Yes – required for
anyone over age 5

in indoor...

There are no
statew

ide
restrictions.

24
M

ississippi
M

arch 31 - M
ay 11:

M
ay be enforced by

all stat...

M
ississippi has

reopened retail
stores, restau...

Yes – required in
schools and at
public gather...

There are no
statew

ide
restrictions.

25
M

issouri
April 6 - M

ay 3:
Penalties not

m
entioned.

M
issouri citizens

m
ay return to

econom
ic and s...

N
o

There are no
statew

ide
restrictions.

26
M

ontana
M

arch 29 - April 26:
Enforceable by the

Attorn...

M
ontana has

reopened m
ain

street and retail bu...

Yes – required for
anyone age 5 or

older in in...

There are no
statew

ide
restrictions.

27
N

ebraska
N

o stay at hom
e

order.

N
ebraska never

issued a stay-at-
hom

e order and...
N

o
There are no

statew
ide

restrictions.

28
N

evada
April 2 - M

ay 9:
Local governm

ents
responsible...

N
evada has

reopened retail
stores, m

alls, rest...

Yes – required for
anyone over age 9

in public...

There are no
statew

ide
restrictions.

29
N

ew
H

am
pshire

M
arch 27 - June 15;

The D
ivision of

Public H
ea...

N
ew

 H
am

pshire has
reopened retail

stores, rest...

Yes - required for
gatherings of m

ore
than 100...

Travelers from
 all

states outside of
N

ew
 Engla...

30
N

ew
 Jersey

M
arch 21 - June 9:;

Penalties for
violations o...

N
ew

 Jersey has
reopened retail

stores, outdoor...

Yes – required for
anyone over age 2

in indoor...

Travelers from
 a

state w
ith either

m
ore than 1...

31
N

ew
 M

exico
M

arch 24 - M
ay 31;

Penalties not
m

entioned.

N
ew

 M
exico has

reopened retail
stores, m

alls, ...

Yes – required in
public spaces.

All travelers m
ust

self-quarantine for
14 days...

32
N

ew
 York

M
arch 22 - M

ay 28:
Penalties not

m
entioned.

N
ew

 York has
reopened retail

stores, outdoor d...

Yes – required for
anyone over age 2

in public...

Travelers from
 a

state w
ith either

m
ore than 1...

33
N

orth C
arolina

M
arch 30 - M

ay 22:
Violation is

punishable as ...

N
orth C

arolina has
reopened retail

stores, res...

Yes – required for
people over age 2

in public...

There are no
statew

ide
restrictions.

34
N

orth D
akota

N
o stay at hom

e
order.

N
orth D

akota never
issued a stay-at-

hom
e order...

N
o

There are no
statew

ide
restrictions.

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

0
1

2
3

4

35
O

hio
M

arch 23 - M
ay 29:

Enforced by state
and local...

O
hio has reopened

retail stores,
restaurant di...

Yes – required for
people age 10 and

older w
he...

The state
encourages

travelers from
states rep...

36
O

klahom
a

M
arch 24 - M

ay 6:
Penalties not

m
entioned.

O
klahom

a reopened
retail stores,

restaurant di...
N

o
There are no

statew
ide

restrictions.

37
O

regon
M

arch 23 until
further notice: Any

person foun...

O
regon has

reopened retail
stores, restaurant ...

Yes – required in
public spaces for

people age...

There are no
statew

ide
restrictions.

38
Pennsylvania

M
arch 23 - June 4:

Penalties not
m

entioned.

Pennsylvania has
reopened retail
stores, house...

Yes – required for
anyone age 2 or

older in pu...

Travelers from
 a

state deem
ed at

risk are reco...

39
R

hode Island
M

arch 28 - M
ay 8:

Penalties not
m

entioned.

R
hode Island has
reopened retail
stores, resta...

Yes – required in all
public spaces.

Travelers from
states w

ith a
positivity rate o...

40
South C

arolina
April 6 - M

ay 4: All
law

 enforcem
ent

officers ...

South C
arolina has

reopened retail
stores, res...

N
o

The state is
encouraging out-of-

state traveler...

41
South D

akota
N

o stay at hom
e

order.

The governor never
issued a stay-at-

hom
e order...

N
o

There are no
statew

ide
restrictions.

42
Tennessee

M
arch 31 - April 30:

Penalties not
m

entioned.

Tennessee has
reopened

restaurants and
retail ...

N
o

There are no
statew

ide
restrictions.

43
Texas

M
arch 31 - April 30:
Failure to com

ply
w

ith an...

Texas has reopened
retail stores,

restaurants,...

Yes – required in all
counties w

ith m
ore

than ...

There are no
statew

ide
restrictions.

44
U

tah
M

arch 27 - M
ay 1:

Penalties not
m

entioned.

U
tah has reopened

restaurants,
personal servic...

N
o

There are no
statew

ide
restrictions.

45
Verm

ont
M

arch 24 - M
ay 15:

Penalties not
m

entioned.

Verm
ont has

reopened retail
stores, restaurant...

Yes – required for
anyone age 2 or

older w
hen ...

Travelers driving
m

ust either
quarantine for 1...

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [29]:
ds.columns = ['state','time','reopen','requirement','add.restrictions']

In [44]:
def clean_func(x):
 if "-" in x:
 return(x.split(';')[0].split(':')[0].split('.')[0].split('(')[0
])
 ds['time_range'] = ds.time.apply(clean_func)

In [46]:
ds.to_csv('ds.csv')

Part 2
In [42]:

lever_variables = pd.read_csv('https://docs.google.com/spreadsheets/u/
1/d/1rHxjvo7rZHRoO8x3RUTl4g8eSfOyumngTUIIsyhHUqw/export?format=csv&id=1
rHxjvo7rZHRoO8x3RUTl4g8eSfOyumngTUIIsyhHUqw&gid=98237079')

0
1

2
3

4

46
Virginia

M
arch 24 - June 10:

C
lass 1

m
isdem

eanor: jail ...

Virginia has
reopened retail

stores, restauran...

Yes – required in
public places for

anyone ove...

There are no
statew

ide
restrictions.

47
W

ashington
M

arch 25 - M
ay 31:

C
rim

inal penalties
pursuant...

W
ashington has

reopened retail
stores, restaur...

Yes – required for
anyone age 5 or

older in an...

There are no
statew

ide
restrictions.

48
W

est Virginia
M

arch 24 - M
ay 4:

The order m
ay be

enforced by...

W
est Virginia has
reopened retail

stores, m
all...

Yes – required for
anyone age 9 or

older in al...

There are no
statew

ide
restrictions.

49
W

isconsin
M

arch 25 – M
ay 13:

O
rder m

ay be
enforced by an...

The governor's stay-
at-hom

e order w
as

to be in...

Yes – required for
anyone age 5 or

older in pu...

The state
encourages

travelers to check
them

se...

50
W

yom
ing

N
o stay at hom

e
order.

W
yom

ing never
issued a stay-at-

hom
e order and ...

N
o

There are no
statew

ide
restrictions.

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

lever_variables['lockdown_len'] = lever_variables['lockdown_len'].apply
(lambda x: str(x).split(" ")[0])
lever_variables['added_levels'] = lever_variables.penalties + lever_var
iables.masks_required
states = lever_variables.copy()

In [141]:
states['share_65'] = states['Total number, adults age 65 and older']/st
ates['Population 2019']
density = (states.iloc[:,10].astype(float)/states.iloc[:,9].astype(floa
t)).reset_index()[[0]]
density.columns = ['density']
 states = pd.concat([states,pd.get_dummies(states.iloc[:,13]), density],
axis = 1)

In [143]:
pruned_states = states[['State','Abbreviation','Population 2019','lockd
own_len','density','Democrat','Republican','added_levels', 'share_65']]

In [144]:
pruned_states

Out[144]:
State

A
bbreviation

Population
2019

lockdow
n_len

density
density

D
em

ocrat

0
Alabam

a
AL

4903185
26

93.531179
93.531179

0

1
Alaska

AK
731545

27
1.114438

1.114438
0

2
Arizona

AZ
7278717

45
63.845034

63.845034
0

3
Arkansas

AR
3017804

nan
56.744838

56.744838
0

4
C

alifornia
C

A
39512223

nan
241.359398

241.359398
1

5
C

olorado
C

O
5758736

31
55.319270

55.319270
1

6
C

onnecticut
C

T
3565287

58
643.089286

643.089286
1

7
D

elaw
are

D
E

973764
68

498.343910
498.343910

1

8
D

istrict of
C

olum
bia

D
C

705749
44

10.732519
10.732519

1

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

State
A

bbreviation
Population

2019
lockdow

n_len
density

density
D

em
ocrat

9
Florida

FL
21477737

27
361.328662

361.328662
0

10
G

eorgia
G

A
10617423

27
971.224204

971.224204
0

11
H

aw
aii

H
I

1415872
67

16.941537
16.941537

1

12
Idaho

ID
1787065

36
30.855088

30.855088
0

13
Illinois

IL
12671821

67
347.935777

347.935777
1

14
Indiana

IN
6732219

38
119.628598

119.628598
0

15
Iow

a
IA

3155070
nan

38.344595
38.344595

0

16
Kansas

KS
2913314

34
72.092104

72.092104
0

17
Kentucky

KY
4467673

nan
86.176977

86.176977
0

18
Louisiana

LA
4648794

54
131.370108

131.370108
0

19
M

aine
M

E
1344212

59
108.343032

108.343032
1

20
M

aryland
M

D
6045680

nan
572.778778

572.778778
1

21
M

assachusetts
M

A
6892503

55
71.196188

71.196188
1

22
M

ichigan
M

I
9986857

65
114.866717

114.866717
0

23
M

innesota
M

N
5639632

51
116.439526

116.439526
1

24
M

ississippi
M

S
2976149

41
42.693899

42.693899
0

25
M

issouri
M

O
6137428

27
41.738150

41.738150
0

26
M

ontana
M

T
1068778

28
13.815998

13.815998
0

27
N

ebraska
N

E
1934408

nan
17.495347

17.495347
0

28
N

evada
N

V
3080156

37
329.393220

329.393220
1

29
N

ew
H

am
pshire

N
H

1359711
80

155.894405
155.894405

1

30
N

ew
 Jersey

N
J

8882190
80

73.048531
73.048531

1

31
N

ew
 M

exico
N

M
2096829

68
38.491583

38.491583
1

32
N

ew
 York

N
Y

19453561
67

361.449267
361.449267

1

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [145]:
import datetime

In [154]:
bounds = lever_variables[['State','Abbreviation','lockdown_start','lock
down_end']]
def convert(x):

State
A

bbreviation
Population

2019
lockdow

n_len
density

density
D

em
ocrat

33
N

orth C
arolina

N
C

10488084
53

148.337916
148.337916

0

34
N

orth D
akota

N
D

762062
nan

16.999688
16.999688

0

35
O

hio
O

H
11689100

67
167.218860

167.218860
0

36
O

klahom
a

O
K

3956971
43

40.218842
40.218842

0

37
O

regon
O

R
4217737

nan
91.574471

91.574471
1

38
Pennsylvania

PA
12801989

73
8286.077023

8286.077023
0

39
R

hode Island
R

I
1059361

41
33.097791

33.097791
1

40
South C

arolina
SC

5148714
28

66.761505
66.761505

0

41
South D

akota
SD

884659
nan

20.990343
20.990343

0

42
Tennessee

TN
6829174

30
25.424976

25.424976
0

43
Texas

TX
28995881

30
341.513721

341.513721
0

44
U

tah
U

T
3205958

35
333.432969

333.432969
0

45
Verm

ont
VT

623989
52

14.589750
14.589750

1

46
Virginia

VA
8535519

78
119.707712

119.707712
1

47
W

ashington
W

A
7614893

67
314.262432

314.262432
1

48
W

est Virginia
W

V
1792147

41
27.359770

27.359770
0

49
W

isconsin
W

I
5822434

nan
59.523135

59.523135
0

50
W

yom
ing

W
Y

578759
nan

8511.161765
8511.161765

0

51
Puerto R

ico
N

aN
3193694

nan
908.590043

908.590043
0

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

 try:
 return(datetime.datetime.strptime(str(x),'%Y-%m-%d'))
 except:
 return(datetime.datetime.strptime('1899-01-01','%Y-%m-%d'))
 years_added = datetime.timedelta(days = 365 * 120)
bounds.lockdown_end = bounds.lockdown_end.apply(lambda x: convert(x) +
years_added)
bounds.lockdown_start = bounds.lockdown_start.apply(lambda x: convert(x
) + years_added)
bounds = bounds.dropna(axis = 0)

In [233]:
covid = pd.read_csv('https://covidtracking.com/data/download/all-states
-history.csv')

In [234]:
covid.dropna(subset = ['state']).columns

Out[234]:
Index(['date', 'state', 'dataQualityGrade', 'death', 'deathConfirmed',
 'deathIncrease', 'deathProbable', 'hospitalized',
 'hospitalizedCumulative', 'hospitalizedCurrently',
 'hospitalizedIncrease', 'inIcuCumulative', 'inIcuCurrently', 'ne
gative',
 'negativeIncrease', 'negativeTestsAntibody',
 'negativeTestsPeopleAntibody', 'negativeTestsViral',
 'onVentilatorCumulative', 'onVentilatorCurrently', 'pending',
 'positive', 'positiveCasesViral', 'positiveIncrease', 'positiveS
core',
 'positiveTestsAntibody', 'positiveTestsAntigen',
 'positiveTestsPeopleAntibody', 'positiveTestsPeopleAntigen',
 'positiveTestsViral', 'recovered', 'totalTestEncountersViral',
 'totalTestEncountersViralIncrease', 'totalTestResults',
 'totalTestResultsIncrease', 'totalTestsAntibody', 'totalTestsAnt
igen',
 'totalTestsPeopleAntibody', 'totalTestsPeopleAntigen',
 'totalTestsPeopleViral', 'totalTestsPeopleViralIncrease',
 'totalTestsViral', 'totalTestsViralIncrease'],
 dtype='object')

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [235]:
covid.date = covid.date.apply(lambda x: convert(x))
filtered_covid = pd.merge(covid,bounds[['Abbreviation','lockdown_start'
,'lockdown_end']], left_on='state', right_on = 'Abbreviation')
weeks2_added = datetime.timedelta(days = 14)
filtered_covid['lockdown_end_delayed'] = filtered_covid['lockdown_end']
 + weeks2_added
filtered_covid['lockdown_start_delayed'] = filtered_covid['lockdown_sta
rt'] + weeks2_added
filtered_covid = filtered_covid.query('(date<=lockdown_end_delayed) &
 (date>=lockdown_start_delayed)')

In [242]:
filtered_covid_peak = filtered_covid.groupby('state').agg({'deathIncrea
se':'max',
 'hospitalizedIncrease':'max',
 'positiveIncrease':'max'}).reset_i
ndex()

In [243]:
filtered_covid_end = filtered_covid.sort_values('date').reset_index().g
roupby('state').agg({'deathIncrease':'last',
 'hospitalizedIncrease':'last',
 'positiveIncrease':'last'}).reset_
index()

In [251]:
fil_cov = pd.merge(filtered_covid_peak,filtered_covid_end, on = 'state'
) fil_cov['death_diminishing_rate'] = fil_cov['deathIncrease_y']/fil_cov[
'deathIncrease_x']
fil_cov['hospitalized_diminishing_rate'] = fil_cov['hospitalizedIncreas
e_y']/fil_cov['hospitalizedIncrease_x']
fil_cov['positive_diminishing_rate'] = fil_cov['positiveIncrease_y']/fi
l_cov['positiveIncrease_x']

In [255]:
fil_cov = fil_cov[['state','death_diminishing_rate',
 'hospitalized_diminishing_rate',
 'positive_diminishing_rate']].fillna(fil_cov.hospitalized_dimi
nishing_rate.mean(skipna = True))

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [256]:
filtered_covid_agg = fil_cov

In [266]:
from sklearn.preprocessing import StandardScaler
filtered_covid_agg_data = StandardScaler().fit_transform(filtered_covid
_agg[['death_diminishing_rate',

 'hospitalized_diminishing_rate',

 'positive_diminishing_rate']])

In [267]:
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
principalComponents = pca.fit(filtered_covid_agg_data)

In [268]:
principalComponents.explained_variance_ratio_

In [269]:
principalComponents.components_

In [296]:
filtered_covid_agg_data

Out[268]:
array([0.52673492, 0.27307939, 0.20018569])

Out[269]:
array([[0.59069292, 0.5009272 , 0.63257713],
 [-0.51333867, 0.83814829, -0.18436607],
 [0.62254742, 0.21582257, -0.75223356]])

Out[296]:
array([[-0.08679487, 1.3729835 , 0.19620723],
 [0.96462078, -0.4564843 , -0.6299453],
 [-0.01447528, 2.21565164, 0.99622318],
 [1.43191663, 2.60034796, 1.62884168],
 [-0.87404533, -1.08174544, -1.87315364],
 [1.43191663, 0. , -0.16038737],
 [0.35988498, 0. , -0.72621194],
 [1.12817433, 1.55495867, -0.16996099],
 [-0.48165987, 0.41774961, 0.2410829],
 [-1.60550638, -1.08174544, -1.94319354],
 [1.43191663, -0.63989423, -1.44723529],
 [0.4618496 , 0. , 0.24863326],

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [270]:
filtered_covid_agg['health_index'] = [i[0] for i in principalComponents
.transform(filtered_covid_agg_data)]

In [303]:
filtered_covid_agg[['state','health_index']]

 [1.04533552, -1.08174544, 0.78910924],
 [-0.50098892, 0.39109192, 0.93323987],
 [-0.56948613, 0. , -1.39268913],
 [-0.03858181, -0.28920422, 0.34701358],
 [-1.60550638, -0.78116639, -0.12215598],
 [-0.72483344, 0. , 1.62884168],
 [1.43191663, 0.95515729, 1.3198421],
 [0.47273042, 0. , -0.17641224],
 [0.99799906, -0.29055182, 1.4420686],
 [-1.60550638, 1.98666573, -0.83201989],
 [0.50381516, 0. , 1.12684918],
 [-0.64632017, -0.79850749, 0.37661305],
 [-1.26450671, 0. , -1.01900844],
 [1.17879805, -1.08174544, 0.16357168],
 [0.49732494, 0. , -0.14930323],
 [-0.95075168, -0.764509 , -1.44036016],
 [-0.57102173, 0.89706666, -0.67790741],
 [-1.03598957, -1.08174544, -0.21431375],
 [-0.95306353, -1.08174544, -0.79913798],
 [-0.18171434, -0.60340702, 1.43813897],
 [0.41944229, 0.37665234, 1.12447823],
 [0.56408148, 2.07433462, -0.19314237],
 [1.43191663, 0. , -0.12823161],
 [-0.99802178, -0.67822835, 0.62827159],
 [0.40136239, -0.88674361, 1.62884168],
 [-1.60550638, -1.08174544, -1.67303962],
 [-1.27263811, 0. , -0.23723042],
 [1.43191663, -1.08174544, -0.25282744]])

Out[303]:
state

health_index

0
AK

0.760612

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

state
health_index

1
AL

-0.057360

2
AZ

1.731518

3
C

O
3.178776

4
C

T
-2.243082

5
D

C
0.744366

6
D

E
-0.246804

7
FL

1.337812

8
G

A
0.077253

9
H

I
-2.719457

10
ID

-0.390205

11
IL

0.430091

12
IN

0.574769

13
KS

0.490324

14
LA

-1.217375

15
M

A
0.051853

16
M

E
-1.416942

17
M

I
0.602214

18
M

N
2.159189

19
M

O
0.167644

20
M

S
1.356185

21
M

T
-0.479503

22
N

C
1.010419

23
N

H
-0.543534

24
N

J
-1.391537

25
N

M
0.257904

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [271]:
health_i = pd.merge(pruned_states,filtered_covid_agg[['state','health_i
ndex']], left_on = 'Abbreviation', right_on = 'state')

In [279]:
plt.scatter(health_i.lockdown_len,health_i.health_index)

state
health_index

26
N

V
0.199321

27
N

Y
-1.855705

28
O

H
-0.316762

29
O

K
-1.289397

30
PA

-1.610360

31
R

I
0.500133

32
SC

1.147756

33
TN

1.250112

34
TX

0.764707

35
U

T
-0.531837

36
VA

0.823256

37
VT

-2.548564

38
W

A
-0.901805

39
W

V
0.144014

Out[279]:
<matplotlib.collections.PathCollection at 0x1312789e8>

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [273]:
health_i.to_csv('health_index.csv')

In [274]:
econ = pd.read_csv('Downloads/gdp1.csv').iloc[:,1:7].dropna(axis = 0).d
rop(['Unemployment Feb20'], axis = 1)

In [275]:
econ.iloc[:,2] = econ.iloc[:,2].apply(lambda x: x.replace("%","")).appl
y(float)
econ.iloc[:,3] = econ.iloc[:,3].apply(lambda x: x.replace("%","")).appl
y(float)
econ.iloc[:,4] = econ.iloc[:,4].apply(lambda x: x.replace("%","")).appl
y(float)

In [280]:
econ['Unemployment_Rate'] = econ.iloc[:,4]/econ.iloc[:,2]

In [289]:
econ = econ.drop(['Unemployment March20','Unemployment April20','Unempl
oyment May20'], axis = 1)

In [290]:
from sklearn.decomposition import PCA

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

pca = PCA(n_components=2)
principalComponents2 = pca.fit(econ.iloc[:,1:])

In [291]:
principalComponents2.explained_variance_ratio_

In [292]:
principalComponents2.components_

In [293]:
econ['indexes'] = [i[0] for i in principalComponents2.transform(econ.il
oc[:,1:])]

In [300]:
econ

Out[291]:
array([0.71729648, 0.28270352])

Out[292]:
array([[-0.71484831, 0.69927956],
 [0.69927956, 0.71484831]])

Out[300]:
State

G
D

P change 1st quarter
U

nem
ploym

ent_R
ate

indexes

0
Alabam

a
-4.8

3.200000
-0.049782

1
Alaska

-4.0
2.442308

-1.151499

2
Arizona

-3.6
1.475410

-2.113570

3
Arkansas

-5.0
1.920000

-0.801890

4
C

alifornia
-4.7

2.981818
-0.273837

5
C

olorado
-4.1

1.961538
-1.416206

6
C

onnecticut
-4.6

2.823529
-0.456010

7
D

elaw
are

-5.6
3.180000

0.508111

8
D

istrict of C
olum

bia
-4.0

1.466667
-1.833745

9
Florida

-4.9
3.113636

-0.038689

10
G

eorgia
-4.7

2.043478
-0.929999

11
H

aw
aii

-8.1
9.791667

6.918635

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

State
G

D
P change 1st quarter

U
nem

ploym
ent_R

ate
indexes

12
Idaho

-4.1
3.600000

-0.270464

13
Illinois

-5.4
3.642857

0.688808

14
Indiana

-5.6
4.100000

1.151449

15
Iow

a
-3.5

3.090909
-1.055370

16
Kansas

-3.1
3.571429

-1.005291

17
Kentucky

-5.8
2.096154

-0.106830

18
Louisiana

-6.6
2.119403

0.481306

19
M

aine
-6.3

3.133333
0.975872

20
M

aryland
-5.0

3.030303
-0.025478

21
M

assachusetts
-5.1

5.928571
2.072707

22
M

ichigan
-6.8

4.953488
2.606093

23
M

innesota
-4.0

3.413793
-0.472159

24
M

ississippi
-5.2

2.058824
-0.561844

25
M

issouri
-4.7

2.589744
-0.548006

26
M

ontana
-5.4

2.500000
-0.110368

27
N

ebraska
-1.3

1.325000
-3.862900

28
N

evada
-8.2

3.666667
2.707033

29
N

ew
 H

am
pshire

-5.7
6.416667

2.842931

30
N

ew
 Jersey

-5.5
4.162162

1.123432

31
N

ew
 M

exico
-3.1

1.444444
-2.492648

32
N

ew
 York

-8.2
3.536585

2.616070

33
N

orth C
arolina

-5.1
2.976744

0.008555

34
N

orth D
akota

-2.6
4.550000

-0.678421

35
O

hio
-5.5

2.396552
-0.111223

36
O

klahom
a

-4.0
4.344828

0.178894

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [301]:
econ.iloc[:,[0,3]]

State
G

D
P change 1st quarter

U
nem

ploym
ent_R

ate
indexes

37
O

regon
-4.4

4.085714
0.283641

38
Pennsylvania

-5.6
2.310345

-0.100021

39
R

hode Island
-6.2

3.489362
1.153351

40
South C

arolina
-4.8

3.875000
0.422232

41
South D

akota
-2.2

3.032258
-2.025686

42
Tennessee

-6.2
3.333333

1.044243

43
Texas

-2.5
2.549020

-2.149150

44
U

tah
-3.1

2.263158
-1.920138

45
Verm

ont
-6.1

4.129032
1.529174

46
Virginia

-3.8
2.727273

-1.095199

47
W

ashington
-5.0

2.960784
-0.074091

48
W

est Virginia
-5.0

2.150000
-0.641056

49
W

isconsin
-5.0

3.903226
0.584939

50
W

yom
ing

-3.6
2.315789

-1.525910

Out[301]:
State

indexes

0
Alabam

a
-0.049782

1
Alaska

-1.151499

2
Arizona

-2.113570

3
Arkansas

-0.801890

4
C

alifornia
-0.273837

5
C

olorado
-1.416206

6
C

onnecticut
-0.456010

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

State
indexes

7
D

elaw
are

0.508111

8
D

istrict of C
olum

bia
-1.833745

9
Florida

-0.038689

10
G

eorgia
-0.929999

11
H

aw
aii

6.918635

12
Idaho

-0.270464

13
Illinois

0.688808

14
Indiana

1.151449

15
Iow

a
-1.055370

16
Kansas

-1.005291

17
Kentucky

-0.106830

18
Louisiana

0.481306

19
M

aine
0.975872

20
M

aryland
-0.025478

21
M

assachusetts
2.072707

22
M

ichigan
2.606093

23
M

innesota
-0.472159

24
M

ississippi
-0.561844

25
M

issouri
-0.548006

26
M

ontana
-0.110368

27
N

ebraska
-3.862900

28
N

evada
2.707033

29
N

ew
 H

am
pshire

2.842931

30
N

ew
 Jersey

1.123432

31
N

ew
 M

exico
-2.492648

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [294]:
econ.to_csv('econ.csv')

In []:
covid.dropna(subset = ['state'])[]

In []:

State
indexes

32
N

ew
 York

2.616070

33
N

orth C
arolina

0.008555

34
N

orth D
akota

-0.678421

35
O

hio
-0.111223

36
O

klahom
a

0.178894

37
O

regon
0.283641

38
Pennsylvania

-0.100021

39
R

hode Island
1.153351

40
South C

arolina
0.422232

41
South D

akota
-2.025686

42
Tennessee

1.044243

43
Texas

-2.149150

44
U

tah
-1.920138

45
Verm

ont
1.529174

46
Virginia

-1.095199

47
W

ashington
-0.074091

48
W

est Virginia
-0.641056

49
W

isconsin
0.584939

50
W

yom
ing

-1.525910

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [6]:
import numpy as np
import pandas as pd
 from datetime import datetime
 import matplotlib.pyplot as plt
import matplotlib.cm as cm
 import sklearn.model_selection as ms
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.inspection import plot_partial_dependence

In [7]:
lockdown_data = pd.read_csv("~/Downloads/ds.csv")

In [8]:
lockdown_data["time_range"] = lockdown_data["time_range"][lockdown_data
['time_range'].notnull()].apply(lambda x: x.split(" - "))

In [9]:
lockdown_data["lockdown_start"] = lockdown_data["time_range"][lockdown_
data['time_range'].notnull()].apply(lambda x:x[0])
lockdown_data["lockdown_end"] = lockdown_data["time_range"][lockdown_da
ta['time_range'].notnull()].apply(lambda x:x[1])

In [10]:
lockdown_data["lockdown_end"][10] = "April 30"
lockdown_data["lockdown_start"] = lockdown_data["lockdown_start"][lockd
own_data['lockdown_start'].notnull()].apply(lambda x:datetime.strptime(
x, '%B %d'))
lockdown_data["lockdown_end"] = lockdown_data["lockdown_end"][lockdown_
data['lockdown_end'].notnull()].apply(lambda x:datetime.strptime(x, '%B
 %d'))

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:1: Setting

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [11]:
lockdown_data["lockdown_len"] = lockdown_data["lockdown_end"] - lockdow
n_data["lockdown_start"]

In [12]:
lockdown_data["penalties"] = lockdown_data["time"].apply(lambda x : not
("Penalties not mentioned." in x))

In [13]:
lockdown_data["masks_required"] = lockdown_data["requirement"].apply(la
mbda x : "Yes" in x)

In [14]:
lockdown_data["additional"] = lockdown_data["add.restrictions"].apply(l
ambda x : not("There are no statewide restrictions." in x))

In [15]:
state_data = pd.read_csv("~/Desktop/State Data - Sheet1.csv")

In [16]:
new_header = state_data.iloc[0]
state_data = state_data[1:]
state_data.columns = new_header

In [17]:
lockdown_data_new = lockdown_data.iloc[:, [1, 7, 8, 9, 10, 11, 12]]

In [18]:
lockdown_data_new = lockdown_data_new.rename(columns = {"state":"State"
})
state_data = state_data.rename(columns = {'State ':"State"})

In [19]:
merged_data = pd.merge(lockdown_data_new, state_data, on='State', how=
'outer')

g
_

g
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame
 See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 """Entry point for launching an IPython kernel.

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [20]:
merged_data.to_csv(r'~/Desktop/state_lockdown_data.csv')

In []:
#skeleton code
 X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 0)
rfregressor = RandomForestRegressor(max_depth=100, random_state=0)
rfregressor.fit(X_train, y_train)
 #partial dependency
my_plots = plot_partial_dependence(rfregressor,
 features=[0, 2], # column numbers of
 plots we want to show
 X=X, # raw predictors dat
a.
 feature_names=['Distance', 'Landsiz
e', 'BuildingArea'], # labels on graphs
 grid_resolution=10)
 #feature importance
importances = rfregressor.feature_importances_
std = np.std([tree.feature_importances_ for tree in rfregressor.estimat
ors_],
 axis=0)
indices = np.argsort(importances)[::-1]
 # Print the feature ranking
print("Feature ranking:")
 for f in range(X.shape[1]):
 print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indic
es[f]]))
 # Plot the impurity-based feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],
 color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

plt.xlim([-1, X.shape[1]])
plt.show()

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [963]:
import numpy as np
import pandas as pd
 import statsmodels.api as sm
 from datetime import datetime
 import matplotlib.pyplot as plt
import matplotlib.cm as cm
 import sklearn.model_selection as ms
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.inspection import plot_partial_dependence
from sklearn.inspection import permutation_importance
from sklearn.metrics import r2_score
from sklearn.inspection import partial_dependence
 import eli5
from eli5.sklearn import PermutationImportance
 import plotly
import pandas as pd
import numpy as np
import seaborn as sns
import plotly.express as px
import matplotlib
%matplotlib inline

In [964]:
health_index = pd.read_csv("~/Desktop/health_index.csv")
econ_index = pd.read_csv("~/Desktop/econ.csv")

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [965]:
health_index = health_index.rename(columns = {'lockdown_len':"Lockdown
 Length"})
health_index = health_index.rename(columns = {'health_index':"Health In
dex"})
health_index = health_index.rename(columns = {'added_levels':"Added Lev
els"})
health_index = health_index.rename(columns = {'density':"Density"})
health_index = health_index.rename(columns = {'share_65':"Share_65"})
X = health_index.iloc[:, [3, 4, 5, 7, 9, 11, 12]]
X = X.drop(X.index[12])
y = health_index.iloc[:, [14]]
y = y.drop(y.index[12])
y = y.values.ravel()

In [966]:
for i in range(len(y)):
 temp_X = X.drop(X.index[i])
 temp_y = y.drop(y.index[i])
 temp_y = temp_y.values.ravel()
 rfregressor = RandomForestRegressor(max_depth=4, random_state=5)
 rfregressor.fit(temp_X, temp_y)
 print(i, rfregressor.predict(health_index.iloc[i, [3, 4, 5, 7, 9, 1
1, 12]].values.reshape(1, -1))-health_index.iloc[i, [14]].values)

In [888]:
LR = sm.OLS(y, X).fit()

AttributeError Traceback (most recent call l
ast)
<ipython-input-966-4227c171821b> in <module>
 1 for i in range(len(y)):
 2 temp_X = X.drop(X.index[i])
----> 3 temp_y = y.drop(y.index[i])
 4 temp_y = temp_y.values.ravel()
 5 rfregressor = RandomForestRegressor(max_depth=4, random_sta
te=5)
 AttributeError: 'numpy.ndarray' object has no attribute 'drop'

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [889]:
LR.summary()

Out[889]:
O

LS R
egression R

esults

D
e

p
. V

a
r
ia

b
le

:
y

R
-s

q
u

a
r
e

d
:

0.291

M
o

d
e

l:
O

LS
A

d
j. R

-s
q

u
a

r
e

d
:

0.163

M
e

th
o

d
:

Least Squares
F

-s
ta

tis
tic

:
2.263

D
a

te
:

Fri, 25 Sep 2020
P

r
o

b
 (F

-s
ta

tis
tic

):
0.0614

T
im

e
:

16:13:37
L

o
g

-L
ik

e
lih

o
o

d
:

-59.017

N
o

. O
b

s
e

r
v

a
tio

n
s

:
40

A
IC

:
132.0

D
f R

e
s

id
u

a
ls

:
33

B
IC

:
143.9

D
f M

o
d

e
l:

6

C
o

v
a

r
ia

n
c

e
 T

y
p

e
:

nonrobust

c
o

e
f

s
td

 e
r
r

t
P

>
|t|

[0
.0

2
5

0
.9

7
5

]

P
o

p
u

la
tio

n
 2

0
1

9
3.654e-08

3.23e-08
1.130

0.266
-2.92e-08

1.02e-07

L
o

c
k

d
o

w
n

 L
e

n
g

th
-0.0331

0.015
-2.167

0.038
-0.064

-0.002

D
e

n
s

ity
-0.0001

0.000
-0.818

0.419
-0.000

0.000

D
e

m
o

c
r
a

t
2.3640

1.616
1.463

0.153
-0.924

5.652

R
e

p
u

b
lic

a
n

2.3586
1.499

1.574
0.125

-0.691
5.408

A
d

d
e

d
 L

e
v

e
ls

0.2993
0.302

0.992
0.328

-0.314
0.913

S
h

a
r
e

_
6

5
-8.4979

9.139
-0.930

0.359
-27.091

10.095

O
m

n
ib

u
s
:

0.684
D

u
r
b

in
-W

a
ts

o
n

:
1.989

P
r
o

b
(O

m
n

ib
u

s
):

0.710
J

a
r
q

u
e

-B
e

r
a

 (J
B

):
0.706

S
k

e
w

:
0.010

P
r
o

b
(J

B
):

0.703

K
u

r
to

s
is

:
2.350

C
o

n
d

. N
o

.
4.48e+08

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [967]:
X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 5)
rfregressor = RandomForestRegressor(max_depth=4, random_state=5)
rfregressor.fit(X, y)
np.sqrt(np.mean((rfregressor.predict(X_test) - y_test)**2))

In [968]:
rfregressor.predict(health_index.iloc[12, [3, 4, 5, 7, 9, 11, 12]].valu
es.reshape(1, -1))

In [969]:
health_index.iloc[12, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1)

In [974]:
rfregressor.predict(np.array([6732219, 90, 119.6285983367688, 0, 1, 2,
0.1508273869284407]).reshape(1, -1))

In [894]:
def pred_ints(model, X, percentile=95):
 err_down = []
 err_up = []
 perc_50 = []
 for x in range(len(X)):
 preds = []
 for pred in model.estimators_:

 N
otes:

[1] Standard Errors assum
e that the covariance m

atrix of the errors is correctly specified.
[2] The condition num

ber is large, 4.48e+08. This m
ight indicate that there are

strong m
ulticollinearity or other num

erical problem
s.

Out[967]:
0.6237966692301442

Out[968]:
array([0.91188192])

Out[969]:
array([[6732219, 38, 119.6285983367688, 0, 1, 2, 0.1508273869284407]],
 dtype=object)

Out[974]:
array([-0.44019457])

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

 preds.append(pred.predict(X_test.iloc[x,].values.reshape(1,
 -1)))
 err_down.append(np.percentile(preds, (100 - percentile) / 2.))
 perc_50.append(np.percentile(preds, 50))
 err_up.append(np.percentile(preds, 100 - (100 - percentile) /
2.))
 return err_down, err_up, perc_50

In [895]:
pred_ints(rfregressor, X_test, percentile=90)

In [896]:
truth = y_test
correct = 0.
for i, val in enumerate(truth):
 if err_down[i] <= val <= err_up[i]:

Out[895]:
([-0.05961785228657985,
 -0.4542011945606605,
 -1.402898366266888,
 0.05793002951319271,
 -1.6335839801633703,
 -1.3699375805583438,
 -2.3959525587486623,
 -1.2957746038908695],
 [1.3964562451662454,
 2.1591891992336145,
 1.013029230539649,
 3.1787760193110546,
 0.25891439842809855,
 2.125244968632568,
 0.346541445223477,
 1.1085055967097148],
 [0.5930460748795401,
 0.22284549804590875,
 -0.9974719242363628,
 3.1787760193110546,
 -0.5435340548379382,
 0.6676628911436999,
 -2.049393386451893,
 0.1440144428018571])

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

 correct += 1
print(correct/len(truth))

In [897]:
np.std(y_test)

In [898]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_test), y_test)
correlation = correlation_matrix[0,1]
r_squared = correlation**2
r_squared

In [899]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_train), y_train)
correlation_xy = correlation_matrix[0,1]
r_squared = correlation_xy**2
r_squared

In [900]:
#r2_score(y_test, rfregressor.predict(X_test))

In [901]:
#r2_score(y_train, rfregressor.predict(X_train))

In [902]:
sns.scatterplot(
 x='Lockdown Length',
 y='Health Index',
 data=health_index
) sns.despine()

0.5

Out[897]:
1.5000959095201696

Out[898]:
0.9253695974295977

Out[899]:
0.8688545829255999

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [903]:
fig = plt.figure()
ax1 = fig.add_subplot(111)
 ax1.scatter(X_test.iloc[:,1], y_test, s=10, c='b', marker="s", label='a
ctual')
ax1.scatter(X_test.iloc[:,1], rfregressor.predict(X_test), s=10, c='r',
 marker="o", label='predicted')
plt.legend(loc='upper right')
plt.show()

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [904]:
#partial dependency - lockdown length
#my_plots = plot_partial_dependence(rfregressor, features=[1], X=X_trai
n, grid_resolution=10)

In [905]:
def plot_pdp(model, X, feature, target=False, return_pd=False, y_pct=Tr
ue, figsize=(10,9), norm_hist=True, dec=.5):
 # Get partial dependence
 pardep = partial_dependence(model, X, [feature])

 # Get min & max values
 xmin = pardep[1][0].min()
 xmax = pardep[1][0].max()
 ymin = pardep[0][0].min()
 ymax = pardep[0][0].max()

 # Create figure
 fig, ax1 = plt.subplots(figsize=figsize)
 ax1.grid(alpha=.5, linewidth=1)

 # Plot partial dependence
 color = 'tab:blue'
 ax1.plot(pardep[1][0], pardep[0][0], color=color)

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

 ax1.tick_params(axis='y', labelcolor=color)
 ax1.set_xlabel(feature, fontsize=14)

 tar_ylabel = ': {}'.format(target) if target else ''
 ax1.set_ylabel('Partial Dependence{}'.format(tar_ylabel), color=col
or, fontsize=14)

 tar_title = target if target else 'Target Variable'
 ax1.set_title('Relationship Between {} and {}'.format(feature, tar_
title), fontsize=16)

 if y_pct and ymin>=0 and ymax<=1:
 # Display yticks on ax1 as percentages
 fig.canvas.draw()
 labels = [item.get_text() for item in ax1.get_yticklabels()]
 labels = [int(np.float(label)*100) for label in labels]
 labels = ['{}%'.format(label) for label in labels]
 ax1.set_yticklabels(labels)

 # Plot line for decision boundary
 ax1.hlines(dec, xmin=xmin, xmax=xmax, color='black', linewidth=2, l
inestyle='--', label='Decision Boundary')
 ax1.legend()
 ax2 = ax1.twinx()
 color = 'tab:red'
 ax2.hist(X[feature], bins=80, range=(xmin, xmax), alpha=.25, color=
color, density=norm_hist)
 ax2.tick_params(axis='y', labelcolor=color)
 ax2.set_ylabel('Distribution', color=color, fontsize=14)

 if y_pct and norm_hist:
 # Display yticks on ax2 as percentages
 fig.canvas.draw()
 labels = [item.get_text() for item in ax2.get_yticklabels()]
 labels = [int(np.float(label)*100) for label in labels]
 labels = ['{}%'.format(label) for label in labels]
 ax2.set_yticklabels(labels)

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

 plt.show()

 if return_pd:
 return pardep

In [906]:
plot_pdp(rfregressor, X, 'Lockdown Length', target='Health Index')

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
rning:
 FixedFormatter should only be used together with FixedLocator

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [907]:
#partial dependency - added levels
#my_plots = plot_partial_dependence(rfregressor, features=[5], X=X_trai
n, grid_resolution=10)

In [908]:
plot_pdp(rfregressor, X, 'Added Levels', target='Health Index')

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [909]:
perm = PermutationImportance(rfregressor, random_state=1).fit(X_test, y
_test)
eli5.show_weights(perm, feature_names = X_test.columns.tolist())

rning:
 FixedFormatter should only be used together with FixedLocator

Out[909]:
W

e
ig

h
t

F
e

a
tu

r
e

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [1006]:
econ_index = econ_index.rename(columns = {'State ':"State"})
econ_index = econ_index.rename(columns = {'indexes':"Economic Index"})
econ_index["State"] = econ_index["State"].apply(lambda x: x.strip())
econ = pd.merge(health_index, econ_index, on='State')
econ

Ou
[909]

g

W
e

ig
h

t
F

e
a

tu
r
e

1.0898 ± 0.7635
Lockdow

n Length

0.1605 ± 0.2849
Population 2019

0.0799 ± 0.1081
D

em
ocrat

0.0658 ± 0.0337
D

ensity
0.0390 ± 0.0582

R
epublican

0.0223 ± 0.0577
Share_65

0.0041 ± 0.0090
Added Levels

Out[1006]:

U
n

n
a

m
e

d
:

0
_

x
S

ta
te

A
b

b
r
e

v
ia

tio
n

P
o

p
u

la
tio

n

2
0

1
9

L
o

c
k
d

o
w

n

L
e

n
g

th
D

e
n

s
ity

d
e

n
s

ity
.1

D
e

0
0

Alabam
a

AL
4903185

26
93.531179

93.531179

1
1

Alaska
AK

731545
27

1.114438
1.114438

2
2

Arizona
AZ

7278717
45

63.845034
63.845034

3
3

C
olorado

C
O

5758736
31

55.319270
55.319270

4
4

C
onnecticut

C
T

3565287
58

643.089286
643.089286

5
5

D
elaw

are
D

E
973764

68
498.343910

498.343910

6
6

D
istrict of

C
olum

bia
D

C
705749

44
10.732519

10.732519

7
7

Florida
FL

21477737
27

361.328662
361.328662

8
8

G
eorgia

G
A

10617423
27

971.224204
971.224204

9
9

H
aw

aii
H

I
1415872

67
16.941537

16.941537

1
0

10
Idaho

ID
1787065

36
30.855088

30.855088

1
1

11
Illinois

IL
12671821

67
347.935777

347.935777

1
2

12
Indiana

IN
6732219

38
119.628598

119.628598

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

U
n

n
a

m
e

d
:

0
_

x
S

ta
te

A
b

b
r
e

v
ia

tio
n

P
o

p
u

la
tio

n

2
0

1
9

L
o

c
k
d

o
w

n

L
e

n
g

th
D

e
n

s
ity

d
e

n
s

ity
.1

D
e

1
3

13
Kansas

KS
2913314

34
72.092104

72.092104

1
4

14
Louisiana

LA
4648794

54
131.370108

131.370108

1
5

15
M

aine
M

E
1344212

59
108.343032

108.343032

1
6

16
M

assachusetts
M

A
6892503

55
71.196188

71.196188

1
7

17
M

ichigan
M

I
9986857

65
114.866717

114.866717

1
8

18
M

innesota
M

N
5639632

51
116.439526

116.439526

1
9

19
M

ississippi
M

S
2976149

41
42.693899

42.693899

2
0

20
M

issouri
M

O
6137428

27
41.738150

41.738150

2
1

21
M

ontana
M

T
1068778

28
13.815998

13.815998

2
2

22
N

evada
N

V
3080156

37
329.393220

329.393220

2
3

23
N

ew
H

am
pshire

N
H

1359711
80

155.894405
155.894405

2
4

24
N

ew
 Jersey

N
J

8882190
80

73.048531
73.048531

2
5

25
N

ew
 M

exico
N

M
2096829

68
38.491583

38.491583

2
6

26
N

ew
 York

N
Y

19453561
67

361.449267
361.449267

2
7

27
N

orth C
arolina

N
C

10488084
53

148.337916
148.337916

2
8

28
O

hio
O

H
11689100

67
167.218860

167.218860

2
9

29
O

klahom
a

O
K

3956971
43

40.218842
40.218842

3
0

30
Pennsylvania

PA
12801989

73
8286.077023

8286.077023

3
1

31
R

hode Island
R

I
1059361

41
33.097791

33.097791

3
2

32
South C

arolina
SC

5148714
28

66.761505
66.761505

3
3

33
Tennessee

TN
6829174

30
25.424976

25.424976

3
4

34
Texas

TX
28995881

30
341.513721

341.513721

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [1007]:
X = econ.iloc[:, [3, 4, 5, 7, 9, 11, 12]]
#X = X.drop(X.index[12])
y = econ.iloc[:, [20]]
#y = y.drop(y.index[12])
y = y.values.ravel()

In [924]:
for i in range(len(y)):
 temp_X = X.drop(X.index[i])
 temp_y = y.drop(y.index[i])
 temp_y = temp_y.values.ravel()
 rfregressor = RandomForestRegressor(max_depth=4, random_state=5)
 rfregressor.fit(temp_X, temp_y)
 print(i, rfregressor.predict(econ.iloc[i, [3, 4, 5, 7, 9, 11, 12]].
values.reshape(1, -1))-econ.iloc[i, [20]].values)

U
n

n
a

m
e

d
:

0
_

x
S

ta
te

A
b

b
r
e

v
ia

tio
n

P
o

p
u

la
tio

n

2
0

1
9

L
o

c
k
d

o
w

n

L
e

n
g

th
D

e
n

s
ity

d
e

n
s

ity
.1

D
e

3
5

35
U

tah
U

T
3205958

35
333.432969

333.432969

3
6

36
Verm

ont
VT

623989
52

14.589750
14.589750

3
7

37
Virginia

VA
8535519

78
119.707712

119.707712

3
8

38
W

ashington
W

A
7614893

67
314.262432

314.262432

3
9

39
W

est Virginia
W

V
1792147

41
27.359770

27.359770

40 row
s × 21 colum

ns

0 [0.851428868768763]
1 [-1.5788217729574068]
2 [3.714555804725369]
3 [1.2160093484207768]
4 [10.591709298909816]
5 [1.5197627420769493]
6 [6.111596366163483]
7 [-0.6391143263823982]

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [996]:
rfregressor.predict(econ.iloc[12, [3, 4, 5, 7, 9, 11, 12]].values.resha
pe(1, -1))

In []:
econ.iloc[, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1)

8 [3.5506208604422946]
9 [-15.548246228110244]
10 [5.204449459171856]
11 [-1.8903128147384116]
12 [0.6793355036391016]
13 [2.5618318810547454]
14 [-4.033065277731541]
15 [6.780683667455127]
16 [-5.743404905351756]
17 [-13.120489014626042]
18 [7.11796592831533]
19 [-0.18102724415151528]
20 [3.7858993358168456]
21 [5.611580732228454]
22 [-23.839003437913473]
23 [-2.659716004869784]
24 [-2.412545524712864]
25 [11.176238851611473]
26 [0.8675843208921528]
27 [3.9584705093218755]
28 [1.1465740464271912]
29 [-1.7293615539129694]
30 [1.7773994092388787]
31 [-7.105433471472004]
32 [-1.4351703673626746]
33 [-1.5698588400372309]
34 [0.9426351270740201]
35 [10.323754889382641]
36 [-0.5063809836092497]
37 [8.872957948224256]
38 [-3.617719032244981]
39 [-1.662435439371683]

Out[996]:
array([2.97258068])

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [704]:
LR = sm.OLS(y, X).fit()
LR.summary()

Out[704]:
O

LS R
egression R

esults

D
e

p
. V

a
r
ia

b
le

:
y

R
-s

q
u

a
r
e

d
:

0.262

M
o

d
e

l:
O

LS
A

d
j. R

-s
q

u
a

r
e

d
:

0.127

M
e

th
o

d
:

Least Squares
F

-s
ta

tis
tic

:
1.949

D
a

te
:

Fri, 25 Sep 2020
P

r
o

b
 (F

-s
ta

tis
tic

):
0.102

T
im

e
:

14:40:10
L

o
g

-L
ik

e
lih

o
o

d
:

-72.455

N
o

. O
b

s
e

r
v

a
tio

n
s

:
40

A
IC

:
158.9

D
f R

e
s

id
u

a
ls

:
33

B
IC

:
170.7

D
f M

o
d

e
l:

6

C
o

v
a

r
ia

n
c

e
 T

y
p

e
:

nonrobust

c
o

e
f

s
td

 e
r
r

t
P

>
|t|

[0
.0

2
5

0
.9

7
5

]

P
o

p
u

la
tio

n
 2

0
1

9
-3.932e-09

4.52e-08
-0.087

0.931
-9.59e-08

8.81e-08

L
o

c
k

d
o

w
n

 L
e

n
g

th
0.0223

0.021
1.043

0.304
-0.021

0.066

D
e

n
s

ity
-0.0001

0.000
-0.635

0.530
-0.001

0.000

D
e

m
o

c
r
a

t
-4.5396

2.261
-2.008

0.053
-9.140

0.061

R
e

p
u

b
lic

a
n

-5.1084
2.097

-2.436
0.020

-9.375
-0.841

A
d

d
e

d
 L

e
v

e
ls

-0.1435
0.422

-0.340
0.736

-1.002
0.715

S
h

a
r
e

_
6

5
26.7997

12.788
2.096

0.044
0.783

52.816

O
m

n
ib

u
s
:

13.454
D

u
r
b

in
-W

a
ts

o
n

:
1.864

P
r
o

b
(O

m
n

ib
u

s
):

0.001
J

a
r
q

u
e

-B
e

r
a

 (J
B

):
23.573

S
k

e
w

:
0.788

P
r
o

b
(J

B
):

7.61e-06

K
u

r
to

s
is

:
6.415

C
o

n
d

. N
o

.
4.48e+08

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [1008]:
X_train, X_test, y_train, y_test = ms.train_test_split(X, y, test_size=
0.2, random_state = 0)
rfregressor = RandomForestRegressor(max_depth=2, random_state=0)
rfregressor.fit(X, y)
np.sqrt(np.mean((rfregressor.predict(X_test) - y_test)**2))

In [998]:
y

In [1009]:
rfregressor.predict(econ.iloc[0, [3, 4, 5, 7, 9, 11, 12]].values.reshap
e(1, -1))

In [1010]:
econ.iloc[0, [3, 4, 5, 7, 9, 11, 12]].values.reshape(1, -1)

 N
otes:

[1] Standard Errors assum
e that the covariance m

atrix of the errors is correctly specified.
[2] The condition num

ber is large, 4.48e+08. This m
ight indicate that there are

strong m
ulticollinearity or other num

erical problem
s.

Out[1008]:
6.3562407944387225

Out[998]:
array([-2.18159879, -0.35539157, -2.92476745, -2.93690662, -6.13638926,
 3.0839055 , -4.20387385, 0.65645336, -3.10261679, 14.8710528 ,
 -4.17911353, 4.24575168, 2.42697252, -3.61651444, 2.38277479,
 -4.45891129, 4.25979085, 13.40087701, -5.79456245, 0.40751059,
 -4.3937593 , -3.79232787, 20.86150866, 4.19638493, 3.65887747,
 -4.01783013, 2.88852179, -0.55614195, 3.7078234 , 0.3058497 ,
 2.31902801, 5.80890427, -1.01599634, 0.25991562, -0.45189116,
 -5.56879575, 2.14758381, -4.62135535, 3.44136913, 1.7367593
9])

Out[1009]:
array([-1.43193918])

Out[1010]:
array([[4903185, 26, 93.53117906262518, 0, 1, 1, 0.16540024494282798]],
 dtype=object)

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [1017]:
rfregressor.predict(np.array([4903185, 60, 93.53117906262518, 0, 1, 1,
0.16540024494282798]).reshape(1, -1))

In [706]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_test), y_test)
correlation = correlation_matrix[0,1]
r_squared = correlation**2
r_squared

In [707]:
correlation_matrix = np.corrcoef(rfregressor.predict(X_train), y_train)
correlation = correlation_matrix[0,1]
r_squared = correlation**2
r_squared

In [708]:
r2_score(y_test, rfregressor.predict(X_test))

In [709]:
plt.scatter(X.iloc[:, 1], y)

Out[1017]:
array([-0.04315836])

Out[706]:
0.3328969578527192

Out[707]:
0.7499976542385185

Out[709]:
<matplotlib.collections.PathCollection at 0x11f902490>

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [710]:
#partial dependency (added levels)
#my_plots = plot_partial_dependence(rfregressor, features=[5], X=X, gri
d_resolution=10)

In [1004]:
plot_pdp(rfregressor, X, 'Lockdown Length', target='Economic Index')

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
rning:
 FixedFormatter should only be used together with FixedLocator

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [598]:
#partial dependency (lockdown length)
#my_plots = plot_partial_dependence(rfregressor, features=[1], X=X, gri
d_resolution=10)

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [1005]:
plot_pdp(rfregressor, X, 'Added Levels', target='Economic Index')

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:33: UserWa
rning:
 FixedFormatter should only be used together with FixedLocator
 /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:51: UserWa
rning:
 FixedFormatter should only be used together with FixedLocator

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

In [640]:
fig = plt.figure()
ax1 = fig.add_subplot(111)
 ax1.scatter(X_test.iloc[:,1], y_test, s=10, c='b', marker="s", label='a
ctual')
ax1.scatter(X_test.iloc[:,1], rfregressor.predict(X_test), s=10, c='r',
 marker="o", label='predicted')

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

plt.legend(loc='upper right')
plt.show()

In [713]:
perm = PermutationImportance(rfregressor, random_state=1).fit(X_test, y
_test)
eli5.show_weights(perm, feature_names = X_test.columns.tolist())

In []:

Out[713]:
W

e
ig

h
t

F
e

a
tu

r
e

-0.0026 ± 0.0118
Added Levels

-0.0053 ± 0.0516
R

epublican
-0.0567 ± 0.1146

Population 2019
-0.0960 ± 0.5125

D
ensity

-0.1043 ± 0.0286
D

em
ocrat

-0.2388 ± 0.3275
Share_65

-0.4528 ± 1.1405
Lockdow

n Length

C
reate P

D
F

 in your applications w
ith the P

dfcrow
d H

T
M

L to P
D

F
 A

P
I

P
D

F
C

R
O

W
D

